Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 36 стр.

UptoLike

Составители: 

m = 1, . . . , n (a
α
, b
a
) = 0 α = 1, . . . m
b = 1, . . . , n m
G (a
1
, . . . , a
m
, b
1
, . . . , b
nm
) =
G (a
1
, . . . , a
m
) 0
0 G (b
1
, . . . , b
nm
)
!
,
m
M
1
r
1
m π
m
r = r
0
+ t
α
a
α
M
1
π
m
(m + 1) P (a
1
, . . . , a
m
, r
1
r
0
) m P (a
1
, . . . , a
m
)
dist (M
1
, π
m
) =
p
det G (a
1
, . . . , a
m
, r
1
r
0
)
p
det G (a
1
, . . . , a
m
)
.
det G (a
1
, . . . , a
m
, r
1
r
0
)
M
0
(r
0
) M
0
0
(r
0
0
) π
m
r
0
0
= r
0
+ λ
α
a
α
(r
1
r
0
0
) L{a
1
, . . . , a
m
}
λ
α
(r
0
, a
β
) + (λ
α
a
α
, a
β
) = 0, β = 1, . . . , m.
a
α
α = 1, . . . , m
E
n
E
n
=
E
n
x 7→
e
x
e
x(y) = (x, y)
E
n
ε(x
1
, . . . , x
n
) n 1 x
1
=
a
1
, . . . , x
n1
= a
n1
x
n
= x
e
b(x) = ε(a
1
, . . . , a
n1
, x)
e
b E
n
b E
n
eε : E
n
× E
n
× . . . × E
n
|
{z }
n1
3 {a
1
, . . . , a
n1
} 7→ b E
n
,
   £—™œ¤œšY[¥˜š›—^ -/.-6>E2*:/8 „-3:26-” •±º‹ 1-7-358 /.35B*D60B5 .30
6‡+-: m = 1, . . . , n < E 7-9-  )7- (aα, ba) = 0 D68 B/*C α = 1, . . . m 0 B/*C
                           )
b = 1, . . . , n − m  .-62 5*:
                                                                                               !
                                                 G (a1 , . . . , am )           0
    G (a1 , . . . , am , b1 , . . . , bn−m ) =                                                     ,
                                                         0            G (b1 , . . . , bn−m )
-712D5 0 /6*D2*7 3*E26>757< 
     å—Xæ[œ Z[® ›«]˜[Y\]® Xœ˜˜š—®\]® —š š—«™] Z— m¯W[—˜™—˜š]^
     ’2/7> E5D5,A 7-)15 M1 / 35D02/ B*17-3-: r1 0 m .6-/1-/7> πm  0:*‡
ˆ58 .535:*730)*/10* 235B,*,08 r = r0 + tαaα < 5//7-8,0* -7 M1 D- πm ,5
C-D07/8 151 4BA/-75; (m + 1) :*3,-9- .53566*6*.0.*D5 P (a1, . . . , am, r1 −
r0 )  -/,-B5,0*: 1-7-3-9- 8B68*7/8 m :*3,A” .53566*6*.0.*D P (a1 , . . . , am ) ~
                                       p
                                        det G (a1 , . . . , am , r1 − r0 )
                     dist (M1 , πm ) =   p                                 .
                                            det G (a1 , . . . , am )
  *”/7B07*6>,-  -.3*D*607*6> det G (a1, . . . , am, r1 − r0) ,* 0E:*,07/8  */60
E5:*,07> 7-)12 M0(r0) ,5 M00 (r00) ∈ πm / 35D02/ B*17-3-: r00 = r0 + λαaα
7512‡  )7- (r1 − r00) ⊥ L{a1, . . . , am} < -¨„„0½0*,7A λα ,5C-D87/8 0E /0
/7*:A 235B,*,0”
                      (r0 , aβ ) + (λα aα , aβ ) = 0, β = 1, . . . , m.                  •±»‹
                                                                            
’-/1-6>12 :5730½5 /0/7*:A 235B,*,0” •±»‹ F ¨7- :5730½5 35:5 60,*”,-
,*E5B0/0:-9- ,5+-35 B*17-3-B aα  α = 1, . . . , m  ¨75 /0/7*:5 0:**7 *D0,
/7B*,,-* 3*‰*,0* <
    ÅY™š—X\—Y WX—]¤›YZY\]Y › E ^
                )                „
        5,-,0 */10” 0E-:-3 0E: En ∼
                                         n
                                              = E∗n  x 7→ x        e(y) = (x, y)  .-EB-68
                                                            e  9D* x
*7 -.3*D*607> 5,56-9 B*17-3,-9- .3-0EB*D*,08 B En <
    Á01/0328 B „-3:* -+Ö*:5 ε(x , . . . , x ) .*3BA* n − 1 5392:*,7-B x =
a1 , . . . , xn−1 = an−1  5 .-/6*D,0”      -/75B688
                                             1         n
                                                          .3-0EB-6>,A:    xn = x   .-62 )
                                                                                         1
                                                                                           0:
60,*”,2‡ „-3:2 b(x)    e                                   Á
                              = ε(a1 , . . . , an−1 , x) < -3:* b  e ∈ E∗ B 15,-,0)*/1-:
0E-:-3„0E:* /--7B*7/7B2*7 B*17-3 b ∈ En < 3*E26>757* .-62)5*: -7-+35
                                                                         n


“*,0*
                              × . . . × En} 3 {a1 , . . . , an−1 } 7→ b ∈ En ,
                εe : |En × En {z
                                n−1
                                                 ´À