Поверхностные интегралы. Скопина М.А. - 37 стр.

UptoLike

Составители: 

Рубрика: 

(ϕ
k
)
1
(e
j
) =
e
e
j1
j = k + 1, . . . , d (ϕ
k
1
)
0
= A
T
k
A
T
k
k
B = (ϕ
k
1
)
0
· ϕ
0
· (ϕ
n
)
0
= (ϕ
k
1
ϕ ϕ
n
)
0
A k n
1
A k det A = (1)
n+k
det B
k = 0 ϕ(e
n
) = 0
ϕ(0) = e
r
ϕ(x) = e
r
+ A · x n A
e
r
e
j
e
r
ψ(x) = e
1
+ A
0
· x A
0
A
1 r
(ϕ
0
1
)
0
A
0
1
det ψ
0
= (1)(1)
n+1
det(ϕ
0
1
ψ ϕ
n
)
0
.
ϕ(γ
n
) = 0 ψ(γ
n
) = 0
(ψ
1
ϕ)(γ
n
) = γ
n
det(ψ
1
ϕ)
0
= det(ϕ
n
1
(ψ
1
ϕ) ϕ
n
)
0
=
det((ψ ϕ
n
)
1
(ϕ ϕ
n
))
0
.
ϕ ψ
ϕ ϕ
n
ψ ϕ
n
n = 0 ϕ
1
sign det ϕ
0
= sign (det(ϕ
1
)
0
)
1
=
(1)
k
sign (det(ϕ
0
1
ϕ
1
ϕ
k
)
0
)
1
=
(1)
k
sign det(ϕ
k
1
ϕ ϕ
0
)
0
.