ВУЗ:
Составители:
p
a
=
λ
1/2
s, m
2
a
,m
2
b
2m
b
,E
a
=
s − m
2
a
− m
2
b
2m
b
,E
a
+m
b
=
s − m
2
a
+ m
2
b
2m
b
.
m
a
= m
b
= m
β
cm
=
p
a
E
a
+ m
b
=
λ
1/2
s, m
2
,m
2
s
.
a
β
∗
a
=
p
∗
E
∗
,
m
a
= m
b
= m
β
∗
a
=
p
∗
E
∗
=
λ
1/2
s, m
2
,m
2
s
,
β
cm
= β
∗
a
g
∗
a
=
β
cm
β
∗
a
=1.
−β
cm
” ”
p
z
= γ
cm
(β
cm
E
∗
+ p
∗
z
) , p
⊥
=0.
| p
z
|
| p
z
|=| β
∗
|·E
∗
p
z
= γ
cm
E
∗
(β
cm
+ β
∗
) , p
⊥
=0,
5 ; ; "A C 0 λ1/2 s, m2a , m2b s − m2a − m2b s − m2a + m2b pa = , Ea = , Ea + mb = . 2mb 2mb 2mb . 7 C F 1 65 G C 0 ma = mb = m? pa λ1/2 s, m2 , m2 βcm = = . Ea + mb s a 0 ∗ p βa∗ = , E∗ 1 C 1 7 20 1 F FA +G FA *GG0 ma = mb = m ? ∗ 1/2 2 2 p λ s, m , m βa∗ = ∗ = , E s ? ga∗ = ββcm∗ = 1 . βcm = βa∗ a ; 0 ' 0 %7 * 6 * 0 % )! ' + 3' 5 "; C 5 −βcm F ”” 0 1 1 1 C 1 5 G I2 1 0 2 1 1 0 pz = γcm (βcm E ∗ + p∗z ) , p⊥ = 0 . 2 | pz | 1 2 1 0 | p z |=| β ∗ | ·E ∗ 8 5 pz = γcm E ∗ (βcm + β ∗ ) , p⊥ = 0 , +E
Страницы
- « первая
- ‹ предыдущая
- …
- 274
- 275
- 276
- 277
- 278
- …
- следующая ›
- последняя »