Лекции по основам кинематики элементарных процессов. Строковский Е.А. - 277 стр.

UptoLike

Составители: 

p
z
= γ
cm
E
(β
cm
β
) , p
=0,
θ
tan θ =
| p
⊥|
p
z
p
p
z
.
p
= p
= p
sin θ
p
z
= p
cos θ
p
z
= γ
cm
E
(β
cm
+ β
cos θ
) ,p
= β
E
.
tan θ =
sin θ
γ
cm
(g
+cosθ
)
,g
=
β
cm
β
.
E
+ β
cm
γ
cm
p cos θ = γ
cm
p
2
+ m
2
1/2
.
E
p
2
1 β
2
cm
cos
2
θ
2pmβ
cm
γ
γ
cm
cos θ + m
2
1
γ
2
γ
2
cm
=0.
4
˜
D
4
˜
D =4m
2
β
2
cm
γ
2
γ
2
cm
cos
2
θ 4
1 β
2
cm
cos
2
θ
· m
2
1
γ
2
γ
2
cm
,
˜
D = m
2
β
2
cm
cos
2
θ +
γ
2
γ
2
cm
1
.
   1  C         1  
1   C           
   0 
                            pz = γcm E ∗ (βcm − β ∗ ) , p⊥ = 0 ,

     C  1  1 C 1 
5  #; 8  0     2   θ C
    9 
                                                | p⊥|   p⊥
                                   tan θ =            ≡    .
                                                  pz    pz
 2  0   0   p⊥ = p⊥∗ = p ∗ sin θ∗  pz∗ = p ∗ cos θ ∗
;1   9  1  6   0 2   0  
                     pz = γcm E ∗ (βcm + β ∗ cos θ ∗ ) , p ∗ = β ∗ E ∗ .

        C   2  2   0 1
      C  ?
                                        sin θ ∗          βcm
                        tan θ =          ∗      ∗
                                                   , g∗ = ∗ .
                                  γcm (g + cos θ )       β

     9     FAB!G
                                                                 1/2
                       E ∗ + βcm γcm p cos θ = γcm p2 + m2              .

   . 1     10   0       7 2
         E ∗  mγ ∗ 0 1 ?
                                                                
        2
                     2      2              γ∗          2   γ∗ 2
    p           1−   βcm   cos θ − 2p mβcm     cos θ + m 1 − 2     =0.
                                           γcm              γcm

H                          4D̃   7 2   ?
                                                                     
                      2 γ
                          ∗2                                    γ∗ 2
    4D̃ =        4m2 βcm  2
                                     2           2     2     2
                                  cos θ − 4 1 − βcm cos θ · m 1 − 2     ,
                         γcm                                     γcm
 1   20    1  1    > 
  ?                              ∗2
                                        
                                                        γ
                             D̃ = m2 βcm
                                      2
                                         cos2 θ +         2
                                                            −1    .
                                                        γcm

                                                  ++