ВУЗ:
Составители:
E
∗
µ
E
∗
µ
− p
∗
µ
p
∗
µ
s m
2
i
λ
t
min
≈−
µ
2
M
2
− m
2
2
s
2
+ ... .
l =
k
f
+ k
i
k
f
+ k
i
, m =
k
f
− k
i
k
f
− k
i
, n =
k
i
× k
f
k
i
× k
f
,
k
i
k
f
l m n
l = m × n , m = n × l , n = l × m .
l = m × n
m × n =
k
f
− k
i
k
f
− k
i
×
k
i
× k
f
k
i
× k
f
=
k
f
× [k
i
× k
f
] − k
i
× [k
i
× k
f
]
k
f
− k
i
·
k
i
× k
f
.
a × [b ×c]=
b (ac) − c (ab)
k
f
× [k
i
× k
f
]=k
i
(k
f
k
f
) − k
f
(k
f
k
i
)=k
i
− k
f
cos θ,
k
i
× [k
i
× k
f
]=k
i
(k
i
k
f
) − k
f
(k
i
k
i
)=k
i
cos θ − k
f
,
k
f
× [k
i
× k
f
] − k
i
× [k
i
× k
f
]=(k
i
+ k
f
)(1− cos θ) ,
θ k
f
k
i
k
f
− k
i
·
k
i
× k
f
=sinθ
2(1− cos θ)=2cos
θ
2
(1 − cos θ) ,
m × n =
k
i
+ k
f
2cosθ/2
.
. Eµ∗ E ∗µ − pµ∗ p µ∗ F"+"EG F"+"!G0 1
s m2i 0 2 λ C C 1 0 1/
?
2
µ2 M 2 − m 2
tmin ≈ −
s2
+ ... . F"+"+G
;
FG . 1
2 F"E"G?
kf + ki k − ki k × kf
l = , m= f i
kf − ki , n = ki × kf ,
kf + ki
2 ki kf 0 1 1
0 F 0
G
/ 0 l0 m n 5
9 ?
l=m×n , m=n×l , n=l×m .
. 1 20 l = m × n
kf − ki k × kf k × [ki × kf ] − ki × [ki × kf ]
m × n = × i
= f
kf − ki · ki × kf .
kf − ki ki × kf
H O 1 1 a × [b × c] =
b (ac) − c (ab)?
kf × [ki × kf ] = ki (kf kf ) − kf (kf ki ) = ki − kf cos θ ,
ki × [ki × kf ] = ki (ki kf ) − kf (ki ki ) = ki cos θ − kf ,
kf × [ki × kf ] − ki × [ki × kf ] = (ki + kf ) (1 − cos θ) ,
2 θ 2 C kf ki
I 1 ?
θ
kf − ki · ki × kf = sin θ 2 (1 − cos θ) = 2 cos (1 − cos θ) ,
2
0
ki + kf
m×n= .
2 cos θ/2
,"
Страницы
- « первая
- ‹ предыдущая
- …
- 279
- 280
- 281
- 282
- 283
- …
- следующая ›
- последняя »
