ВУЗ:
Составители:
E
∗
µ
E
∗
µ
− p
∗
µ
p
∗
µ
s m
2
i
λ
t
min
≈−
µ
2
M
2
− m
2
2
s
2
+ ... .
l =
k
f
+ k
i
k
f
+ k
i
, m =
k
f
− k
i
k
f
− k
i
, n =
k
i
× k
f
k
i
× k
f
,
k
i
k
f
l m n
l = m × n , m = n × l , n = l × m .
l = m × n
m × n =
k
f
− k
i
k
f
− k
i
×
k
i
× k
f
k
i
× k
f
=
k
f
× [k
i
× k
f
] − k
i
× [k
i
× k
f
]
k
f
− k
i
·
k
i
× k
f
.
a × [b ×c]=
b (ac) − c (ab)
k
f
× [k
i
× k
f
]=k
i
(k
f
k
f
) − k
f
(k
f
k
i
)=k
i
− k
f
cos θ,
k
i
× [k
i
× k
f
]=k
i
(k
i
k
f
) − k
f
(k
i
k
i
)=k
i
cos θ − k
f
,
k
f
× [k
i
× k
f
] − k
i
× [k
i
× k
f
]=(k
i
+ k
f
)(1− cos θ) ,
θ k
f
k
i
k
f
− k
i
·
k
i
× k
f
=sinθ
2(1− cos θ)=2cos
θ
2
(1 − cos θ) ,
m × n =
k
i
+ k
f
2cosθ/2
.
. Eµ∗ E ∗µ − pµ∗ p µ∗ F"+"EG F"+"!G0 1 s m2i 0 2 λ C C 1 0 1/ ? 2 µ2 M 2 − m 2 tmin ≈ − s2 + ... . F"+"+G ; FG . 1 2 F"E"G? kf + ki k − ki k × kf l = , m= f i kf − ki , n = ki × kf , kf + ki 2 ki kf 0 1 1 0 F 0 G / 0 l0 m n 5 9 ? l=m×n , m=n×l , n=l×m . . 1 20 l = m × n kf − ki k × kf k × [ki × kf ] − ki × [ki × kf ] m × n = × i = f kf − ki · ki × kf . kf − ki ki × kf H O 1 1 a × [b × c] = b (ac) − c (ab)? kf × [ki × kf ] = ki (kf kf ) − kf (kf ki ) = ki − kf cos θ , ki × [ki × kf ] = ki (ki kf ) − kf (ki ki ) = ki cos θ − kf , kf × [ki × kf ] − ki × [ki × kf ] = (ki + kf ) (1 − cos θ) , 2 θ 2 C kf ki I 1 ? θ kf − ki · ki × kf = sin θ 2 (1 − cos θ) = 2 cos (1 − cos θ) , 2 0 ki + kf m×n= . 2 cos θ/2 ,"
Страницы
- « первая
- ‹ предыдущая
- …
- 279
- 280
- 281
- 282
- 283
- …
- следующая ›
- последняя »