ВУЗ:
Составители:
Рубрика:
Оптическая микроскопия. В криминалистическом исследовании веществ, материалов и изделий используется в раз-
личных вариантах: анализ в проходящем свете методами светлого и темного поля, фазового контраста; анализ в поляризо-
ванном свете; наблюдение люминесценции в ультрафиолетовых лучах и др.
Микроскопические методы исследования веществ и материалов. Большое значение для получения контрастных и
равномерно освещенных изображений в микроскопе имеет устройство его осветительной системы. В условиях естественно-
го освещения вогнутое зеркало микроскопа позволяет создать равномерную освещенность препарата без использования до-
полнительных источников освещения. Такая освещенность часто бывает недостаточна. Поэтому пользуются искусственны-
ми источниками света, проецируя равномерно светящееся тело нити лампы на объект. Для микроскопических исследований
в качестве источника света используются лампы накаливания (проекционные, микролампы), электрическая дуга, дневной
свет и т.п.
Наибольшее распространение в практике получила микроскопия в видимой зоне спектра. Структуру препарата, рас-
сматриваемого через микроскоп, можно видеть лишь тогда, когда различные частицы препарата отличаются друг от друга и
от окружающей среды по поглощению (отражению) света или по показателю преломления. Эти свойства обусловливают
разность фаз и амплитуд световых колебаний, прошедших через различные участки препарата, т.е. контрастность изображе-
ния. Однако существуют такие объекты и задачи исследования, решение которых невозможно в рамках традиционных мето-
дов, поэтому были разработаны специальные методы. Техническая и методическая реализация этих методов очень сложна и
требует специальных знаний и навыков. Рассмотрим некоторые специальные методы микроскопических исследований.
Для метода светлого поля в проходящем свете, используемого для исследования прозрачных объектов с включения-
ми, характерно прохождение лучей из конденсатора через препарат в объектив, что дает равномерно освещенное поле в
плоскости изображения. Элементы структуры препарата частично поглощают и отклоняют падающий на них свет, что и
обусловливает, согласно теории Аббе, возникновение изображения. Этот метод может быть полезен и при непоглощающих
объектах, но лишь в том случае, когда они отклоняют или рассеивают освещающий пучок света настолько сильно, что зна-
чительная часть пучка не попадает в объектив.
Метод темного поля в проходящем свете применяется для получения изображений прозрачных непоглощающих, а
поэтому и невидимых объектов при наблюдении в светлом поле. Пучок лучей из конденсора темного поля выходит в виде
полого конуса и непосредственно в объектив не попадает. В поле зрения микроскопа на темном фоне видны светлые изо-
бражения мелких деталей, тогда как у крупных деталей видны только светлые края, которые рассеивают освещающие лучи.
Изображение создается только светом, который рассеивается мелкоструктурными элементами препарата.
По такому изображению нельзя с полной определенностью делать заключение об истинном виде и форме элементов
структуры. Конденсор темного поля требует применения предметного стекла, толщина которого не превышает 1…2 мм.
Кроме того, конденсор должен быть хорошо центрирован относительно объектива.
Наиболее часто методы светлого и темного поля в проходящем свете используются в экспертном исследовании тек-
стильных волокон, наркотических средств, частиц стекла и пластмасс, минеральных компонентов почвы и пр.
При методе светлого поля в отраженном свете освещение препарата производится сверху через объектив, который
одновременно выполняет роль конденсора. Изображение, как и при проходящем свете, создается за счет того, что различные
участки препарата по-разному отклоняют и отражают падающий на них свет.
К методу светлого поля относится и так называемый метод косого освещения. Он осуществляется путем смещения
апертурной диафрагмы в направлении, перпендикулярном к оптической оси. В этом случае при соответствующем диафраг-
мировании можно создать боковое освещение препарата, благодаря чему изображение становится более контрастным. При
предельно возможном косом освещении, как говорилось выше, достигается наибольшая разрешающая способность микро-
скопа в направлении смещения диафрагмы. Если сместить апертурную диафрагму еще дальше так, чтобы свет, направляе-
мый на препарат, не попадал в объектив, то метод косого освещения превращается в метод темного поля.
Данный метод используется для изучения широкого круга вещественных доказательств: изделий из металлов и сплавов,
лакокрасочных покрытий, текстильных волокон, материалов документов и пр.
Метод темного поля в отраженном свете осуществляется путем освещения препарата, например шлифа металла,
сверху с помощью специальной кольцевой зеркальной системы, расположенной вокруг объектива и называемой эпиконден-
сором. Изображение же, как и при проходящем свете, создается только лучами, рассеянными объектом, тогда как лучи света,
вышедшие из эпиконденсора и зеркально отразившиеся от поверхности объекта, в объектив не попадают. Поэтому для рабо-
ты необходимо применять очень яркие источники света.
Метод фазового контраста имеет большое практическое значение, так как дает возможность получать контрастные
изображения прозрачных и бесцветных объектов, почти не видимых при обычных методах микроскопии. К числу таких объ-
ектов относятся, например, осколки стекла, минералогические объекты. Метод основан на том, что даже при малом различии
показателей преломления объекта и среды световая волна, прошедшая сквозь них, претерпевает разные изменения по фазе и
приобретает фазовый рельеф. Темные и светлые места в фазово-контрастном изображении соответствуют различным пока-
зателям преломления в препарате (фазовый контраст), который с помощью специального электронного оптического устрой-
ства преобразуется в ослабление или усиление интенсивности света, прошедшего сквозь объект (т.е. фазовый рельеф волны
заменяется амплитудным рельефом). Так получается видимое изображение препарата.
Метод флуоресцентной или люминесцентной микроскопии. Данный метод использует явление люминесценции.
Объект освещается излучением, возбуждающим люминесценцию (возможна специальная обработка флуоресцирующими
красителями). При этом наблюдается цветная контрастная картина свечения, позволяющая выявить особенности объекта.
Длинноволновое изображение препарата выделяется при помощи светофильтров.
Метод УФ-микроскопии позволяет увеличить предельную разрешающую способность микроскопа. Этот метод рас-
ширяет возможности микроскопических исследований за счет того, что частицы многих веществ и материалов, прозрачные в
видимом свете, сильно поглощают УФ-излучение определенных длин волн и, следовательно, легко различимы в УФ-
изображениях. Так, органические соединения имеют избирательное поглощение в ультрафиолетовой области спектра, бла-
годаря чему они могут быть контрастными без окрашивания.
Страницы
- « первая
- ‹ предыдущая
- …
- 38
- 39
- 40
- 41
- 42
- …
- следующая ›
- последняя »