Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 122 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
Óº°Ò ÈÁÁÒÓÓºº ¹¯Ëº¯ÈϺmÈÓÒ« Ò ºËmÒÓº® ÈÁÁÒÓÓº°Ò ¹¯ºÒÏmËËÓÒ«
ÈÁÁÒÓÓ©² ¹¯Ëº¯ÈϺmÈÓÒ® °ãËË °¹¯ÈmËãÒmº° mº¯ºº m˯ÎËÓÒ«
˺¯Ëä©
˺¯ËäÈº}ÈÏÈÓÈ

˺¯ËäÈ

iã« m°«}ºº ÈÁÁÒÓÓºº ¹¯Ëº¯ÈϺmÈÓÒ« °˰mË ¹È¯È mÏÈÒäÓº
º¯ººÓÈãÓ©² Óȹ¯ÈmãËÓÒ® }ºº¯©Ë ¹Ë¯Ëmº«°« ÈÓÓ©ä ÈÁÁÒÓ
Ó©ä¹¯Ëº¯ÈϺmÈÓÒËämºmÏÈÒäÓºº¯ººÓÈãÓ©Ë
iº}ÈÏÈËã°mº
cȰ°äº¯Òäº¯ºÓº¯äÒ¯ºmÈÓÓ°Ò°Ëä}ºº¯ÒÓÈ°¹È¯ÈÒ°²ºÓ©²mÏÈ
ÒäÓº º¯ººÓÈãÓ©² Óȹ¯ÈmãËÓÒ® ÏÈÈË°« m ÓË® ÓËÓãËm©äÒ mË}º¯ÈäÒ
p
=
ξ
η
Ò
q
=
η
ξ

º¯ËËäº©Ò²º¯ÈÏ©
pq
==
+
+
=
=
αα
αα
ξ
η
α
ξ
αη
α
ξ
αη
αα
αα
η
ξ
αη α
ξ
αη α
ξ
11 12
21 22
11 12
21 22
11 12
21 22
11 12
21 22
©ãÒ È}ÎË mÏÈÒäÓº º¯ººÓÈãÓ© °ãºmÒË º¯ººÓÈãÓº°Ò mË}º¯ºm
p
Ò
q
ÒäËËmÒ
()()()()
α
ξ
αηαη α
α
ξ
αηαη α
ξ
11 12 11 12 21 22 21 22
0
+−++=
ÒãÒ
−+ ++++ =
()( )()
αα αα
ξ
αααα
ξ
ηαα ααη
11 12 21 22
2
11
2
12
2
21
2
22
2
11 12 21 22
2
0

È¹º°ãË¹Ë¯ËººÏÓÈËÓÒ«}ºªÁÁÒÒËÓºm
−+ + =
UVU
ξ
ξ
ηη
22
20

cȰ°äº¯Òä°ãËÒË°ãÈÒ

U
=
V
=0

{ªºä°ãÈË
ãÈ«¹È¯ÈmÏÈÒäÓºº¯ººÓÈãÓ©²mË}º¯ºmÈÓ
Ó©ä¹¯Ëº¯ÈϺmÈÓÒËä¹Ë¯ËmºÒ°«mºmÏÈÒäÓºº¯ººÓÈãÓ¹È¯mË}º
¯ºm
U=
0
Ò
V
0

ºÈ
0
=
η
ξ

º˰Ò°}ºäÈ«¹È¯ÈmË}º¯ºmÈÏÒ°ÓÈ«
 Ë }  Ò Ò  } È Á Ë  ¯ ©  m © °  Ë ®  ä È ˆ Ë ä È ˆ Ò } Ò  l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



              Óº°ˆÒ ÈÁÁÒÓÓºº ¹¯Ëº­¯ÈϺmÈÓÒ« Ò ºËmÒÓº® ÈÁÁÒÓÓº°ˆÒ ¹¯ºÒÏmËËÓÒ«
              ÈÁÁÒÓÓ©² ¹¯Ëº­¯ÈϺmÈÓÒ® °ãË‚ˈ °¹¯ÈmËãÒmº°ˆ  mˆº¯ºº ‚ˆm˯ÎËÓÒ«
              ˆËº¯Ëä©
     
     
     ‘˺¯ËäȺ}ÈÏÈÓÈ
           
           
           
  ‘˺¯ËäÈ          iã« m°«}ºº ÈÁÁÒÓÓºº ¹¯Ëº­¯ÈϺmÈÓÒ« °‚Ë°ˆm‚ˈ ¹È¯È mÏÈÒäÓº
            º¯ˆººÓÈã Ó©² Óȹ¯ÈmãËÓÒ® }ºˆº¯©Ë ¹Ë¯Ëmº«ˆ°« ÈÓÓ©ä ÈÁÁÒÓ
                    ө乯˺­¯ÈϺmÈÓÒËämºmÏÈÒäÓºº¯ˆººÓÈã Ó©Ë
           
           
   iº}ÈÏȈËã°ˆmº
     
         cȰ°äºˆ¯Ò亯ˆºÓº¯äÒ¯ºmÈÓӂ °Ò°ˆËä‚}ºº¯ÒÓȈ‚°ˆ ¹È¯ÈÒ°²ºÓ©²mÏÈ
         ÒäÓº º¯ˆººÓÈã Ó©² Óȹ¯ÈmãËÓÒ® ÏÈÈˈ°« m ÓË® ÓËӂãËm©äÒ mË}ˆº¯ÈäÒ
             →    ξ     →   η
             p=     Ò q =    
                  η         −ξ
         
         ºˆ¯Ë­‚Ë䈺­©Ò²º­¯ÈÏ©
         
                  →       α11 α12         ξ   α11ξ + α12 η               →       α11 α12         η    α11η − α12 ξ
                  p∗ =                      =                           q∗ =                        =                
                          α 21 α 22       η   α 21ξ + α 22 η                     α 21 α 22       −ξ   α 21η − α 22 ξ
         
                                                                                                                             →
                                                                                                                              ∗
         ­©ãÒ ˆÈ}ÎË mÏÈÒäÓº º¯ˆººÓÈã Ó© °ãºmÒË º¯ˆººÓÈã Óº°ˆÒ mË}ˆº¯ºm p  Ò
             →
              ∗
             q ÒäËˈmÒ
         
                           (α11ξ + α12 η)(α11η − α12 ξ ) + (α 21ξ + α 22 η)(α 21η − α 22 ξ ) = 0 ÒãÒ
         
                   − (α11α12 + α 21α 22 )ξ 2 + (α112 − α122 + α 21
                                                                2
                                                                   − α 22
                                                                       2
                                                                          )ξη + (α11α12 + α 21α 22 )η 2 = 0 
         
         ȹº°ã˹˯˺­ºÏÓÈËÓÒ«}ºªÁÁÒÒËӈºm
         
                                                       − Uξ 2 + 2Vξη + Uη 2 = 0 
         
         
         cȰ°äºˆ¯Òä°ãË‚ Ò˰ã‚ÈÒ
         
             U=V=0 {ªˆºä°ã‚ÈË ã ­È«¹È¯ÈmÏÈÒäÓºº¯ˆººÓÈã Ó©²mË}ˆº¯ºmÈÓ
               ө乯˺­¯ÈϺmÈÓÒËä¹Ë¯Ëmº҈°«mºmÏÈÒäÓºº¯ˆººÓÈã ӂ ¹È¯‚mË}ˆº
               ¯ºm
           
               U=0ÒV ≠ 0‘ºÈ ξ η = 0 ˆº˰ˆ Ò°}ºäÈ«¹È¯ÈmË}ˆº¯ºm­ÈÏÒ°ÓÈ«