Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 120 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
iº}ÈÏÈËã°mº
¯ÒÈÁÁÒÓÓºä ¹¯Ëº¯ÈϺmÈÓÒÒÈÏÒ° ¹Ë¯Ë²ºÒm ÈÏÒ°iË®°mÒËãÓº¹°
Áº¯äã© ¹¯Ëº¯ÈϺmÈÓÒ« ÒäË
xxy
yxy
=++
=++
αα β
αα β
11 12 1
21 22 2
 ºÈ º¯ÈÏÈäÒ
°ȯ©² ÈÏÒ°Ó©² mË}º¯ºm  mË}º¯©
ggg
ggg
1 11 1 21 2
2 12 1 22 2
→→
→→
=+
=+
αα
αα
 º°}ºã}
det det det
T
AA
==
αα
αα
11 12
21 22
0
ºmË}º¯©
g
1
Ò
g
2
ãÒÓˮӺÓËÏÈmÒ°Ò
ä©˺¯ËäÈÒÒÏÓÒ²äºÎÓºº¯ÈϺmÈÈÏÒ°
y
M
2
y

g
2

M


M
2
M

g
2

O


M
1

x
M
1

g
1

O

g
1

x
èqxytvr
°mÓºmº®°Ò°ËäË}ºº¯ÒÓÈ©º}Ò
M
˰
x
Ò
y
¯Ò°ºÈm
°Òã˺¯Ëä©°¹¯ÈmËãÒm©°ººÓºËÓÒ«
x
OM
g
OM
g
xy
OM
g
OM
g
y
== = == =
∗∗
∗∗
1
1
1
1
2
2
2
2
;

º°ãË˰˰mËÓÓººººËÓÒ«ÓÈ°ãÈ®¯ÈÏÓ©²ÏÓÈ}ºm¹ºãÈËäº}ÈÏ©mÈË
äºË°mº®°mº
˺¯ËäÈº}ÈÏÈÓÈ

 Ë }  Ò Ò  } È Á Ë  ¯ ©  m © °  Ë ®  ä È ˆ Ë ä È ˆ Ò } Ò  l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



   iº}ÈÏȈËã°ˆmº
    
    
         ¯Ò ÈÁÁÒÓÓºä ¹¯Ëº­¯ÈϺmÈÓÒÒ ­ÈÏÒ° ¹Ë¯Ë²º҈ m ­ÈÏÒ° iË®°ˆm҈Ëã Óº ¹‚°ˆ 
                                               x ∗ = α11 x + α12 y + β1
         Áº¯ä‚ã© ¹¯Ëº­¯ÈϺmÈÓÒ« ÒäË ˆ mÒ  ∗                         ˆºÈ º­¯ÈÏÈäÒ
                                               y = α 21 x + α 22 y + β2
                                                                                     →               →           →
                                                                                     g1∗ = α11 g1 + α 21 g 2
         °ˆÈ¯©² ­ÈÏÒ°Ó©² mË}ˆº¯ºm ­‚‚ˆ mË}ˆº¯©                                 →
                                                                                                                       º°}ºã }‚
                                                                                                      →          →
                                                                                     g 2∗   = α12 g1 + α 22 g 2
                      T                 α11 α12                                        →             →
             det A        = det A = det           ≠ 0 ˆºmË}ˆº¯©                    g1∗   Ò     g 2∗   ãÒÓˮӺÓËÏÈmÒ°Ò
                                        α 21 α 22
         ä© ˆËº¯ËäÈ ÒÒÏÓÒ²äºÎÓºº­¯ÈϺmȈ ­ÈÏÒ°
     
        

                                y                                                                   M 2∗       y∗ 
                                                                                            →
                                                                                   g 2∗  M ∗ 
         M2M
                  →
          g 2  O ∗ 
                                                                                                                      →
          M1 x                                    M 1∗  g1∗ 
                                                  →
         O g1  x ∗ 
         
         
         
                                                       èqxytvr
         
         
         ‚°ˆ mÓºmº®°Ò°ˆËäË}ºº¯ÒÓȈ©ˆº}Ò M ∗ ˰ˆ  x ∗ Ò y ∗  ¯Ò° ˆºÈm
         °Òよ˺¯Ëä©°¹¯ÈmËãÒm©°ººˆÓº ËÓÒ«
         
                                       →            →                                →                 →
                                    OM 1        O ∗ M 1∗                           OM 2             O ∗ M 2∗
                             x =       →
                                            =       →
                                                           = x∗       ;     y =      →
                                                                                                =      →
                                                                                                               = y ∗ 
                                                     ∗                                                  ∗
                                      g1           g 1
                                                                                     g2                g2

        
        º°ãË˰ˆË°ˆmËÓÓººº­º­ËÓÒ«ÓȰã‚È®¯ÈÏÓ©²ÏÓÈ}ºm¹ºã‚ÈËäº}ÈÏ©mÈË
        äºË°mº®°ˆmº
        
        
     ‘˺¯ËäȺ}ÈÏÈÓÈ