Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 119 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã

¯Ëº¯ÈϺmÈÓÒ«¹ãº°}º°Ò
ααα
11 12 21
,,
Ò
α
22
«mã«°« °ºãȰӺ °ã˰mÒ  ªãËäËÓÈäÒ äÈ¯Ò© ãÒ
ÓˮӺºº¹Ë¯Èº¯È
A
º˰
A
g
=
αα
αα
11 12
21 22

º°mº®°mmË}º¯Óºº¹¯ºÒÏmËËÓÒ«°ä¹¹ãºÈ¹È¯ÈããË㺯ÈääÈ¹º
°¯ºËÓÓººÓÈÈÏÒ°Ó©²mË}º¯È²
g
1
Ò
g
2

Sgg
=
→→
[,]
11
È¹ãºÈ¹È¯ÈããËãº
¯ÈääÈ¹º°¯ºËÓÓººÓÈº¯ÈÏȲÈÏÒ°Ó©²mË}º¯ºm
Sgg
∗∗
=
[,]
12

jäËËä
[,][ , ]( )[,]
det
[, ] det
[, ],
gg g g g g gg
Agg A gg
gg
1 2 11 1 21 2 12 1 22 2 11 22 12 21 1 2
12 12
→→
→→ →→
=+ + = =
==±
αααα αααα
ÓººÈ
SAS
g
=
det
,
Èº¯ÒËÓÈÒ«¹È¯©mË}º¯ºm
{, }
gg
12
→→
ÓËäËÓ«Ë°«¹¯Ò
det
A
g
>
0
ÒäËÓ«Ë°«ÓÈ¹¯ºÒmº¹ºãºÎÓ¹¯Ò
det
A
g
<
0



g
1

g
2

g
2

g
1
èqxytvr
sÈ}ºÓ˺äËÒäºm°Òã˺¯Ëä©ªÒ°ººÓºËÓÒ«m©¹ºãÓËÓ©
ã«ãººÈÏÒ°ÈÈÏÓÈÒÒã«ãºº¹È¯ÈããË㺯ÈääÈ
˺¯ËäÈº}ÈÏÈÓÈ

˺¯ËäÈ

¯ÒÈÁÁÒÓÓºä¹¯Ëº¯ÈϺmÈÓÒÒm°«}È« Ë}ȯºmÈ°Ò°ËäÈ}ºº¯ÒÓÈ
¹Ë¯Ë²ºÒ m Ë}ȯºm °Ò°Ëä }ºº¯ÒÓÈ ¹¯ÒËä }ºº¯ÒÓÈ© º
¯ÈÏÈ}Èκ®º}Ò¹ãº°}º°ÒmÓºmº®°Ò°ËäË}ºº¯ÒÓÈ°ºm
¹ÈÈ°}ºº¯ÒÓÈÈäÒ¹¯ºº¯ÈÏÈmÒ°²ºÓº®

cÈÏËã
¯Ëº­¯ÈϺmÈÓÒ«¹ãº°}º°ˆÒ



          α11 ,α12 ,α 21  Ò α22  «mã« ˆ°« °ºãȰӺ °ã˰ˆmÒ   ªãËäËӈÈäÒ äȈ¯Ò© ãÒ
                                                         α11 α12
          ÓˮӺºº¹Ë¯Èˆº¯È A ˆº˰ˆ  A =                    
                                                    g    α 21 α 22
          
          º°mº®°ˆm‚mË}ˆº¯Óºº¹¯ºÒÏmËËÓÒ« °ä¹ ¹ãºÈ ¹È¯ÈããË㺯Èääȹº
                                                                     →         →                   →   →
          °ˆ¯ºËÓÓººÓÈ­ÈÏÒ°Ó©²mË}ˆº¯È² g1 Ò g2  S = [ g1 , g1 ] È¹ãºÈ ¹È¯ÈããËãº
                                                                                                                     →       →
          ¯Èääȹº°ˆ¯ºËÓÓººÓȺ­¯ÈÏȲ­ÈÏÒ°Ó©²mË}ˆº¯ºm S ∗ = [ g1∗ , g 2∗ ] 

          
          jäËËä
                              →    →             →           →        →            →                                         →   →
                            [ g1∗ , g2∗ ] = [α11 g1 + α 21 g2 ,α12 g1 + α 22 g2 ] = (α11α 22 − α12α 21 )[ g1 , g2 ] =
                                                         →    →                              →   →                                   
                                        = det A g [ g1 , g2 ] = ± det A               g
                                                                                            [ g1 , g2 ] ,
          
                                                                                                                    →    →
          ÓºˆºÈ S ∗ = det A             g
                                                 S   , Ⱥ¯ÒËӈÈÒ«¹È¯©mË}ˆº¯ºm {g1 , g 2 } ÓËäËӫˈ°«¹¯Ò

          det A     g
                         > 0 ÒäËӫˈ°«Óȹ¯ºˆÒmº¹ºãºÎӂ ¹¯Ò det A                                         g
                                                                                                                    < 0 
          
          
                                                                                   
     
      
                                   →                                                                        →
                          g1  g 2∗ 
                         
                         
                                                         →                         →
                                                                                    ∗
                   g 2  g              1
                  
                  
                                                        èqxytvr
                  
                  
           sÈ}ºÓ˺ˆäˈÒ䈺m°Òよ˺¯Ë䩪ˆÒ°ººˆÓº ËÓÒ«­‚‚ˆm©¹ºãÓËÓ©
           ã«ã ­ºº­ÈÏÒ°ÈÈÏÓÈ҈Òã«ã ­ºº¹È¯ÈããË㺯ÈääÈ
           
           
       ‘˺¯ËäȺ}ÈÏÈÓÈ
             
             
             
    ‘˺¯ËäÈ        ¯ÒÈÁÁÒÓӺ乯˺­¯ÈϺmÈÓÒÒm°«}È« Ë}ȯˆºmȰҰˆËäÈ}ºº¯ÒÓȈ
             ¹Ë¯Ë²º҈ m Ë}ȯˆºm‚ °Ò°ˆËä‚ }ºº¯ÒÓȈ ¹¯ÒËä }ºº¯ÒÓȈ© º­
                    ¯ÈÏÈ}Èκ®ˆº}ҹ㺰}º°ˆÒmÓºmº®°Ò°ˆËäË}ºº¯ÒÓȈ­‚‚ˆ°ºm
                    ¹ÈȈ °}ºº¯ÒÓȈÈäÒ¹¯ºº­¯ÈÏÈmÒ°²ºÓº®