Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 117 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã

¯Ëº¯ÈϺmÈÓÒ«¹ãº°}º°Ò
kÓÈãºÒÓº¹º}ÈÏ©mÈË°«º
yy
yy
21
32
∗∗
∗∗
==
λ

~ÈäËÒä º ÒÏ ¹ºãËÓÓ©² °ººÓºËÓÒ® °ãËË ¯ÈmËÓ°mº ºÓºËÓÒ«
ãÒÓº¯ÈϺmÒºÓºËÓÒ«ãÒÓ¹¯ºº¯ÈϺmº¯ËÏ}ºmãËÎÈÒ²ÓÈºÓº®¹¯«äº®
MM
MM
xx yy
xx yy
xx yy
xx yy
xx yy
xx yy
xx y
12
32
21
2
21
2
32
2
32
2
32
2
32
2
32
2
32
2
32
2
32
2
32
2
32
2
21
2
2
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
=
−+
−+
=
−+
−+
==
=
−+
−+
=
−+
()()
()()
()()
()()
()()
()()
()(
λ
λ
λ
−+
=
y
xx yy
MM
MM
1
2
32
2
32
2
12
23
)
()()
.
˺¯ËäÈº}ÈÏÈÓÈ

|äËÒäÈ}ÎËºÒÏ˺¯Ëä©Ó˹º°¯Ë°mËÓÓºm©Ë}ÈËº¹¯ÒÈÁ
ÁÒÓÓºä¹¯Ëº¯ÈϺmÈÓÒÒº¯ËϺ}¹¯«äº®¹Ë¯Ë²ºÒmº¯ËϺ}
˺¯ËäÈ

¯ÒÈÁÁÒÓÓºä¹¯Ëº¯ÈϺmÈÓÒÒºÓºËÓÒËãÒÓº¯ÈϺm m²º¯ËÏ
}ºm ãËÎÈÒ² ÓÈ ¹È¯ÈããËãÓ©² ¹¯«ä©² ¯ÈmÓº ºÓºËÓÒ ãÒÓ Ò²
¹¯ºº¯ÈϺm
iº}ÈÏÈËã°mº
° ÈÓº º
MM
MM
12
34
=
λ
 ¯ºmËËä ¹¯«ä
MM
33
 ¹È¯ÈããËãÓ
M
4
M
2

º°}ºã} ¹¯Ò ÈÁÁÒÓÓºä ¹¯Ëº¯ÈϺmÈÓÒÒ º¯ÈÏ© ¹È¯ÈããËãÓ©² ¹¯«ä©² ¹È
¯ÈããËãÓ© º m °Òã ˺¯Ëä© 
MMMM
4233
Ò
MMM M
423 3
∗∗ ∗∗
¹È¯ÈããË㺯Èää©cÒ°vã˺mÈËãÓº
MM MM
24 33
∗∗
∗∗
=

M
2


M
1

M
2
M
1
M
4
M
3

M
4

M
3
 M
3

M
3

èqxytvr
cÈÏËã
¯Ëº­¯ÈϺmÈÓÒ«¹ãº°}º°ˆÒ



                                                             y 2∗ − y1∗
      kÓÈãºÒÓº¹º}ÈÏ©mÈˈ°«ˆº                                        == λ 
                                                             y 3∗ − y 2∗
      
             ~ÈäˈÒä ˆº ÒÏ ¹ºã‚ËÓÓ©² °ººˆÓº ËÓÒ® °ãË‚ˈ ¯ÈmËÓ°ˆmº ºˆÓº ËÓÒ«
      ãÒÓº­¯ÈϺmÒºˆÓº ËÓÒ«ãÒÓ¹¯ºº­¯ÈϺmºˆ¯ËÏ}ºmãËÎȝҲÓȺӺ®¹¯«äº®
             
                  →
              M 1∗ M 2∗
                                  ( x 2∗ − x1∗ ) 2 + ( y 2∗ − y1∗ ) 2          λ     ( x 3∗ − x 2∗ ) 2 + ( y 3∗ − y 2∗ ) 2
                 →
                          =                                                =                                                     = λ =
                                  ( x 3∗ − x 2∗ ) 2 + ( y 3∗ − y 2∗ ) 2            ( x 3∗ − x 2∗ ) 2 + ( y 3∗ − y 2∗ ) 2
              M 3∗ M 2∗
                                                                                                                                                 
                                                                                                                                    →
                                                                                                                                  M1 M 2
                              λ        ( x3 − x2 ) 2 + ( y3 − y2 ) 2                 ( x 2 − x1 ) 2 + ( y 2 − y1 ) 2
                          =                                                    =                                             =      →
                                                                                                                                             .
                                    ( x3 − x2 ) 2 + ( y3 − y2 ) 2                    ( x3 − x2 ) 2 + ( y3 − y2 ) 2                M2 M3
                      
      ‘˺¯ËäȺ}ÈÏÈÓÈ
      
      |ˆäˈÒä ˆÈ}ÎË ˆº ÒÏ ˆËº¯Ëä©  Ó˹º°¯Ë°ˆmËÓÓº m©ˆË}Èˈ ˆº¹¯ÒÈÁ
ÁÒÓӺ乯˺­¯ÈϺmÈÓÒÒºˆ¯ËϺ}¹¯«äº®¹Ë¯Ë²º҈mºˆ¯ËϺ}
      
      
              

    ‘˺¯ËäÈ              ¯ÒÈÁÁÒÓӺ乯˺­¯ÈϺmÈÓÒÒºˆÓºËÓÒËãÒÓº­¯ÈϺmm‚²ºˆ¯ËÏ
                   }ºm ãËÎȝҲ ÓÈ ¹È¯ÈããËã Ó©² ¹¯«ä©² ¯ÈmÓº ºˆÓºËÓÒ  ãÒÓ Ò²
                          ¹¯ºº­¯ÈϺm
           
     iº}ÈÏȈËã°ˆmº
                                                →
                                             M1 M 2
          ‚°ˆ  ÈÓº ˆº                    →
                                                         = λ  ¯ºmËËä ¹¯«ä‚  M 3 M 3′  ¹È¯ÈããËã ӂ  M4M2
                                             M3 M4
          º°}ºã }‚ ¹¯Ò ÈÁÁÒÓÓºä ¹¯Ëº­¯ÈϺmÈÓÒÒ º­¯ÈÏ© ¹È¯ÈããËã Ó©² ¹¯«ä©² ¹È
          ¯ÈããËã Ó© ˆº m °Òã‚ ˆËº¯Ëä©                                   M 4 M 2 M 3′ M 3  Ò M 4∗ M 2∗ M 3′ ∗ M 3∗ 
                                                                                                   →                →
          ¹È¯ÈããË㺯Èää© cÒ° vã˺mȈËã Óº M 2∗ M 4∗ = M 3∗ M 3′ ∗ 

                  
          M2                     M 1∗  M 2∗ 
          
          M1M4                                           M 3∗  M 4∗ 
           M 3′ 
            M 3∗ 
       M3
       
       èqxytvr