Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 115 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã

¯Ëº¯ÈϺmÈÓÒ«¹ãº°}º°Ò
iº}ÈÏÈËã°mº
º°}ºã}
det A 0
 º m °Òã ˺¯Ëä©  °Ò°ËäÈ ãÒÓˮө² ¯ÈmÓËÓÒ®
A
x
y
x
y
=−
β
β
1
2
m°ËÈ ÒäËË ËÒÓ°mËÓÓºË ¯ËËÓÒË
x
y
ã« ãºº
mË}º¯È
x
y
sºªººÏÓÈÈËºã«}Èκºº¯ÈÏÈÈÁÁÒÓÓºº¹¯Ëº¯ÈϺ
mÈÓÒ«°˰mËËÒÓ°mËÓÓ©®¹¯ºº¯ÈÏº˰°˰mËº¯ÈÓºË¹¯Ëº
¯ÈϺmÈÓÒË
˺¯ËäÈº}ÈÏÈÓÈ

˺¯ËäÈ

¯Ò ÈÁÁÒÓÓºä ¹¯Ëº¯ÈϺmÈÓÒÒ º¯ÈϺä ¹¯«äº® ãÒÓÒÒ «mã«Ë°«
¹¯«äÈ«

iº}ÈÏÈËã°mº
° ÈÓ© ¹¯«äÈ«
xx p
yy q
=+
=+
0
0
τ
τ
 Ë
p Òq ÓË¯ÈmÓ©ËÓãºÓºm¯ËäËÓÓº
}ºº¯ÒÓÈ© Óȹ¯Èmã«˺ mË}º¯È ¹¯«äº® Ò ÈÁÁÒÓÓºË ¹¯Ëº¯ÈϺmÈÓÒË
x
y
A
x
y
=+
β
β
1
2
ºÈº¯ÈϺä¹¯«äº®ËäÓºÎ˰mººË}¹ãº°}º°Ò
°}ºº¯ÒÓÈÈäÒ
xxy pq
yxy pq
=++++
=++++
()()
()()
αα βαατ
αα βαατ
11 0 12 0 1 11 12
21 0 22 0 2 21 22
È}}È}
ppq
qpq
=+
=+
αα
αα
11 12
21 22

~ÈäËÒäº˰ãÒ
αα αα
11 12 21 22
0pq pq+++>
ºä©ÒäËËä¹¯«ä¯Ë
¹ºãºÎÒä¹¯ºÒmÓºË¹°
αα
αα
11 12
21 22
0
0
pq
pq
+=
+=
Óºm°ÒãÈÁÁÒÓÓº°Ò¹¯Ëº¯ÈϺ
mÈÓÒ«
det
αα
αα
11 12
21 22
0
Ò°ã˺mÈËãÓº¹º˺¯ËäË
0
==
qp
˰ËÒÓ
°mËÓÓºË¯ËËÓÒËªº®°Ò°Ëä©¯ÈmÓËÓÒ®º¹¯ºÒmº¯ËÒ°ãºmÒ
˺¯ËäÈº}ÈÏÈÓÈ

˺¯ËäÈ

¯Ò ÈÁÁÒÓÓºä ¹¯Ëº¯ÈϺmÈÓÒÒ º¯ÈϺä ¹È¯ÈããËãÓ©² ¹¯«ä©² «m
ã«°« ¹È¯ÈããËãÓ©Ë ¹¯«ä©Ë º}È ¹Ë¯Ë°ËËÓÒ« ¹¯«ä©²
¹¯ºº¯ÈϺm¹Ë¯Ë²ºÒmº}¹Ë¯Ë°ËËÓÒ«Ò²º¯ÈϺm
cÈÏËã
¯Ëº­¯ÈϺmÈÓÒ«¹ãº°}º°ˆÒ



     iº}ÈÏȈËã°ˆmº
      
          º°}ºã }‚ det A ≠ 0  ˆº m °Òã‚ ˆËº¯Ëä©  °Ò°ˆËäÈ ãÒÓˮө² ‚¯ÈmÓËÓÒ®
                      x   x∗  β1                                                                                       x
                  A     = ∗ −     m°ËÈ ÒäËˈ ËÒÓ°ˆmËÓÓºË ¯Ë ËÓÒË                                                  ã« ã ­ºº
                      y   y   β2                                                                                       y
                   x∗
          mË}ˆº¯È ∗ sºªˆººÏÓÈÈˈˆºã«}Èκºº­¯ÈÏÈÈÁÁÒÓÓºº¹¯Ëº­¯ÈϺ
                   y
          mÈÓÒ«°‚Ë°ˆm‚ˈËÒÓ°ˆmËÓÓ©®¹¯ºº­¯Èψº˰ˆ °‚Ë°ˆm‚ˈº­¯ÈˆÓºË¹¯Ëº­
          ¯ÈϺmÈÓÒË
      
      ‘˺¯ËäȺ}ÈÏÈÓÈ
              
              
              
    ‘˺¯ËäÈ              ¯Ò ÈÁÁÒÓÓºä ¹¯Ëº­¯ÈϺmÈÓÒÒ º­¯ÈϺä ¹¯«äº® ãÒÓÒÒ «mã«Ëˆ°«
                   ¹¯«äÈ«
              
              
     iº}ÈÏȈËã°ˆmº
         
                                              x = x0 + τ p
          ‚°ˆ  ÈÓ© ¹¯«äÈ«                              Ë p Ò q  ÓË ¯ÈmÓ©Ë ӂã  ºÓºm¯ËäËÓÓº 
                                              y = y0 + τ q
          }ºº¯ÒÓȈ© Óȹ¯Èmã« Ëº mË}ˆº¯È ¹¯«äº® Ò ÈÁÁÒÓÓºË ¹¯Ëº­¯ÈϺmÈÓÒË
                  x∗           x   β1
                     = A        +             ‘ºÈº­¯ÈϺ乯«äº®­‚ˈäÓºÎ˰ˆmºˆºË}¹ãº°}º°ˆÒ
                  y∗           y   β2
          °}ºº¯ÒÓȈÈäÒ
          
                       x ∗ = (α11 x 0 + α12 y 0 + β1 ) + (α11 p + α12 q )τ               p ∗ = α11 p + α12 q
                       ∗                                                     ˆÈ}}È}  ∗                   
                       y = (α 21 x 0 + α 22 y 0 + β2 ) + (α 21 p + α 22 q )τ             q = α 21 p + α 22 q
          
          ~ÈäˈÒ䈺˰ãÒ α11 p + α12 q + α 21 p + α 22 q > 0 ˆºä©ÒäËË乯«ä‚ ¯Ë
                                                          α11 p + α12 q = 0
          ¹ºãºÎÒ乯ºˆÒmӺ˹‚°ˆ                                            Óºm°Òã‚ÈÁÁÒÓÓº°ˆÒ¹¯Ëº­¯ÈϺ
                                                          α 21 p + α 22 q = 0
                            α11 α12
          mÈÓÒ« det                  ≠ 0 Ò°ã˺mȈËã Óº¹ºˆËº¯ËäË p = q = 0 ˰ˆ ËÒÓ
                            α 21 α 22
          °ˆmËÓÓºË¯Ë ËÓÒ˪ˆº®°Ò°ˆËä©‚¯ÈmÓËÓÒ®ˆº¹¯ºˆÒmº¯Ë҈‚°ãºmÒ 
      
      
      ‘˺¯ËäȺ}ÈÏÈÓÈ
              
              
    ‘˺¯ËäÈ              ¯Ò ÈÁÁÒÓÓºä ¹¯Ëº­¯ÈϺmÈÓÒÒ º­¯ÈϺä ¹È¯ÈããËã Ó©² ¹¯«ä©² «m
                   ã« ˆ°« ¹È¯ÈããËã Ó©Ë ¹¯«ä©Ë ˆº}È ¹Ë¯Ë°ËËÓÒ« ¹¯«ä©²
                          ¹¯ºº­¯ÈϺm¹Ë¯Ë²º҈mˆº}‚¹Ë¯Ë°ËËÓÒ«Ò²º­¯ÈϺm