Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 113 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã

¯Ëº¯ÈϺmÈÓÒ«¹ãº°}º°Ò
sÈ}ºÓËÒÈ«¹ºãËÓÓºÒÏ¯ÈmËÓ°mÈ
=
x
y
A
x
y
g
¹º°ãËÓËËÒ¹¯Ò
äËÓ«« ãËää  m °Òã ¹¯ºÒÏmºãÓº°Ò
x
y
¹¯Ò²ºÒä } °ººÓºËÓÒ
=

ASAS
gg
1

˺¯ËäÈº}ÈÏÈÓÈ
ÈÈ

Æ vézvtvéuqévkjttvp xqxznun rvvélqtjz tjpzq ujzéq|y vwnéjzvéj
vézvmvtjstv wévnrzqéyínmv éjlqyxknrzvé zv·nr rvvélqtjztvp
wsvxrvxzqtjwé¹uyí
xy+−=320

ËÓÒË
°º}È¹¯ºº¯ÈÏ
M
ÒäËË
¯ÈÒ°mË}º¯
r
x
y
0
0
0
=
 È º}È
M
º¯ÈÏº}Ò
M
 °ººmË°
mËÓÓºËË¯ÈÒ°mË}º¯
r
x
y
0
0
0
=

jÏ ¯Ò°  °ãËË º
M
˰
º}È ¹Ë¯Ë°ËËÓÒ« ¹¯«äº®
xy+−=320
Ò ¹Ë¯¹ËÓÒ}㫯È }
ÓË®¹¯º²º«˺˯ËÏ
M
y
O
x



M

M
èqxytvr
º°}ºã}Óº¯äÈãÓ©®mË}º¯¹¯«äº®
xy+−=320
«mã«Ë°«Óȹ¯Èm
ã«ÒämË}º¯ºäªºº¹Ë¯¹ËÓÒ}㫯Èº¯ÈmÓËÓÒË¹º°ãËÓ˺
ËÒäËmÒ
x
y
x
y
=+
0
0
1
3
τ
|}È°ãËËº}ºº¯ÒÓÈ©¯ÈÒ
°mË}º¯Èº}Ò
M
ºmãËmº¯«°Ò°ËäË¯ÈmÓËÓÒ®

xx
yy
xy
00
00
00
3
320
∗∗
=+
=+
+−=
τ
τ
ÒãÒ
xxy
yxy
000
000
9
10
3
10
1
5
3
10
1
10
3
5
=−+
=− + +

j°¹ºãÏ«¹¯ÈmÒãÈº¹Ë¯ÈÒ®°äÈ¯ÒÈäÒ¹ºãÈËäº}ºÓÈËãÓºº

5
3
5
1
10
1
10
3
10
3
10
9
0
0
0
0
+
=
y
x
y
x
º˰
10
1
10
3
10
3
10
9
ˆ
=
e
A

cÈÏËã
¯Ëº­¯ÈϺmÈÓÒ«¹ãº°}º°ˆÒ



                                                   x ′∗                                                            x′
           sÈ}ºÓËm©҈ȫ¹ºãËÓÓºÒϯÈmËÓ°ˆmÈ      = A                                                          ¹º°ãËÓËËÒ¹¯Ò
                                                   y ′∗                                                       g′   y′
                                                                                                       x′
           äËÓ«« ãËää‚  m °Òã‚ ¹¯ºÒÏmºã Óº°ˆÒ                                                   ¹¯Ò²ºÒä } °ººˆÓº ËÓÒ 
                                                                                                       y′
                                         −1
                   A ′        = S            A       S   
                          g′                       g
           
        ‘˺¯ËäȺ}ÈÏÈÓÈ
               
               
    ~ÈÈÈ                    Æ vézvtvéuqévkjttvp xqxznun rvvélqtjz tjpzq ujzéq|y vwnéjzvéj
                        vézvmvtjstv wévnrzqéyínmv éjlqyxknrzvé€ zv·nr rvvélqtjztvp
                               wsvxrvxzqtjwé¹uyí x + 3y − 2 = 0 
                               
    cËËÓÒË                  ‚°ˆ  ˆº}ȹ¯ºº­¯ÈÏ M ÒäËˈ                                                    y
                                                                →       x0                         
                               ¯È҂°mË}ˆº¯ r0 =                          È ˆº}È            
                                                                        y0                                   O
                                     ∗                                                                                                            x
                                   M   º­¯ÈÏ ˆº}Ò M °ººˆmˈ°ˆ
                                                                                                                                              ∗
                                                                             M 
                                                                             →
                                                                                       x 0∗
                               mËÓÓºË˯È҂°mË}ˆº¯ r0∗ =                                 
                                                                                      y 0∗
                               
                               
                                                                            M
                               jÏ ¯Ò°  °ãË‚ˈ ˆº M ∗  ˰ˆ  
                               ˆº}È        ¹Ë¯Ë°ËËÓÒ«        ¹¯«äº® 
                                 x + 3y − 2 = 0  Ò ¹Ë¯¹ËÓÒ}‚㫯È } 
                               ÓË®¹¯º²º«Ëº˯ËÏM                                  èqxytvr
                                                                                                    
                              º°}ºã }‚ Óº¯äÈã Ó©® mË}ˆº¯ ¹¯«äº® x + 3y − 2 = 0  «mã«Ëˆ°« Óȹ¯Èm
                               ã« ÒämË}ˆº¯ºäªˆºº¹Ë¯¹ËÓÒ}‚㫯Ȉº‚¯ÈmÓËÓÒ˹º°ãËÓ˺­‚
                                                           x        x0             1
                               ˈÒäˈ mÒ                   =            +τ      |ˆ}‚ȰãË‚ˈˆº}ºº¯ÒÓȈ©¯ÈÒ
                                                           y        y0             3
                               ‚°mË}ˆº¯Èˆº}Ò M ∗ ­‚‚ˆ‚ºmãˈmº¯«ˆ °Ò°ˆËäË‚¯ÈmÓËÓÒ®
                                                   x 0∗ = x 0 + τ        ∗      9        3       1
                                                   ∗                     x 0 = 10 x 0 − 10 y 0 + 5
                                 y 0 = y 0 + 3τ ÒãÒ                            
                                                                                  3        1       3
                                                  x + 3y − 2 = 0
                                                     ∗        ∗           y0 = − x0 +
                                                                            ∗
                                                                                             y +
                                                   0         0                 10       10 0 5
                               
                               
                               

                               j°¹ºã ς«¹¯ÈmÒãȺ¹Ë¯ÈÒ®°äȈ¯ÒÈäÒ¹ºã‚ÈËäº}ºÓȈËã Óºˆº
                                                 9                       3             1                                       9         3
                                           x0∗                      −             x0                                                −
                                ∗ = 10                       10           + 5 ˆº˰ˆ  Aˆ                    = 10        10   
                                           y0     3                      1        y0   3                                        3        1
                                               −
                                                                                                                        e
                                                                                                                             −
                                                 10                     10             5                                       10       10