Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 112 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
vã˰mÒË

vºãÈäÒ äÈ¯Ò© ãÒÓˮӺº ºÓº¯ºÓºº º¹Ë¯Èº¯È
A
mÈÏÒ°Ë
{, }
gg
12
→→
«mã«°«}ºº¯ÒÓÈ©mË}º¯ºm
Ag
1
Ò
Ag
2

ÈÈ

Êx}vl¹ qo wéjkqs lnpxzkq¹ x ujzéq|juqwvrjojz·zv ls¹ sqtnpt}
vltvévlt}vwnéjzvévktjwsvxrvxzqxwéjknlsqkyzknélntq¹
°Îjzéq|j wévqoknlntq¹ sqtnpt} vltvévlt} vwnéjzvévk
éjktj wévqoknlntqí ujzéq| xvutvqznsnp

AB A B
ggg
=
°
p°ãÒ
A
1
˰ º¹Ë¯Èº¯ º¯ÈÓ©® ãÒÓˮӺä ºÓº¯ºÓºä
º¹Ë¯Èº¯
A
º

AA
g
g
=
1
1

{©«°ÓÒä ˹˯ mº¹¯º° º ºä }È} ÒÏäËÓÒ°« äÈ¯ÒÈ ãÒÓˮӺº ºÓº¯ºÓºº
º¹Ë¯Èº¯È¹¯ÒÏÈäËÓËÈÏÒ°ÈjäËËä˰º
˺¯ËäÈ

° m °Ò°ËäË }ºº¯ÒÓÈ
{, , }
Og g
12
→→
ÓË}ºº¯©® ºÓº¯ºÓ©® ãÒ
Óˮө® º¹Ë¯Èº¯ ÒäËË äÈ¯Ò
A
g
 ºÈ m °Ò°ËäË }ºº¯ÒÓÈ
{, , }Og g
′′
→→
12
ªºº¹Ë¯Èº¯ËÒäËäÈ¯Ò

ASAS
gg
=
1

Ë
S
äÈ¯ÒÈ¹Ë¯Ë²ºÈº
{, , }Og g
12
→→
}
{, , }Og g
′′
→→
12

iº}ÈÏÈËã°mº
º°ãºmÒmÒ°²ºÓº®°Ò°ËäË}ºº¯ÒÓÈ
x
y
A
x
y
g
=
ÈmÓºmº®°Ò°ËäË
}ºº¯ÒÓÈ 
=
x
y
A
x
y
g
 Ò ¹°
S
äȯÒÈ ¹Ë¯Ë²ºÈ º
{, , }Og g
12
→→
}
{, , }Og g
′′
→→
12
ºÈ
x
y
S
x
y
=
Ò
x
y
S
x
y
=

º°Èmã««mÈ¹º°ãËÓÒ²°ººÓºËÓÒ«m¹Ë¯mºËÒ¹¯ÒÓÒäÈ«mºmÓÒäÈÓÒË
m˯ÎËÓÒË ˺¯Ëä©  º ÓËm©¯ºÎËÓÓº°Ò äÈ¯Ò© ¹Ë¯Ë²ºÈ
S
º˰
°˰mºmÈÓÒËäÈ¯Ò©
S
1
¹ºãÈËäº
S
x
y
AS
x
y
g
=
ÒãÒ
=
x
y
SAS
x
y
g
1

 Ë }  Ò Ò  } È Á Ë  ¯ ©  m © °  Ë ®  ä È ˆ Ë ä È ˆ Ò } Ò  l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



    vã˰ˆmÒË           vˆºã­ÈäÒ äȈ¯Ò© ãÒÓˮӺº ºÓº¯ºÓºº º¹Ë¯Èˆº¯È A  m ­ÈÏÒ°Ë
                       →   →                                                                                      →                →
                             {g1 , g 2 } «mã« ˆ°«}ºº¯ÒÓȈ©mË}ˆº¯ºm A g1 Ò A g 2 
              
              
    ~ÈÈÈ              Êx}vl¹ qo wéjkqs lnpxzkq¹ x ujzéq|juq wvrjojz ·zv ls¹ sqtnpt€}
                  vltvévlt€}vwnéjzvévktjwsvxrvxzqxwéjknlsqk€yzkné lntq¹
                         

                                      °Îjzéq|j wévqoknlntq¹ sqtnpt€} vltvévlt€} vwnéjzvévk
                                           éjktj    wévqoknlntqí      ujzéq|      xvutv qznsnp
                                                     
                                                     AB       = A               B       
                                                          g              g            g
                                      
                                      


                                      °p°ãÒ A −1  ˰ˆ  º¹Ë¯Èˆº¯ º­¯ÈˆÓ©® ãÒÓˮӺä‚ ºÓº¯ºÓºä‚
                                                                                                                   −1
                                                  º¹Ë¯Èˆº¯‚ A ˆº A −1                            = A            
                                                                                                   g               g
       
       
       {©«°ÓÒä ˆË¹Ë¯  mº¹¯º° º ˆºä }È} ÒÏäËÓ҈°« äȈ¯ÒÈ ãÒÓˮӺº ºÓº¯ºÓºº
º¹Ë¯Èˆº¯È¹¯ÒÏÈäËÓË­ÈÏÒ°ÈjäËˈä˰ˆº
       
                                                                                                   →    →
    ‘˺¯ËäÈ             ‚°ˆ  m °Ò°ˆËäË }ºº¯ÒÓȈ {O, g1 , g 2 }  ÓË}ºˆº¯©® ºÓº¯ºÓ©® ãÒ
    
                         Óˮө® º¹Ë¯Èˆº¯ ÒäËˈ äȈ¯Ò‚ A                                                  g
                                                                                                                    ‘ºÈ m °Ò°ˆËäË }ºº¯ÒÓȈ
                                  →       →                                                                                                                −1
                             {O, g1′ , g 2′ } ªˆºˆº¹Ë¯Èˆº¯­‚ˈÒäˈ äȈ¯Ò‚ A                                                       g′
                                                                                                                                                  = S           A   g
                                                                                                                                                                         S 
                                                                                                         →         →                  →       →
                         Ë S äȈ¯Òȹ˯˲ºÈºˆ {O, g1 , g 2 } } {O, g1′ , g 2′ } 


     iº}ÈÏȈËã°ˆmº
                                                                                                         x∗                       x
          º‚°ãºmÒ mÒ°²ºÓº®°Ò°ˆËäË}ºº¯ÒÓȈ                                                                 = A               ÈmÓºmº®°Ò°ˆËäË
                                                                                                         y∗                  g    y
                                              x ′∗                      x′
          }ºº¯ÒÓȈ                                 = A                 Ò ¹‚°ˆ                         S   äȈ¯ÒÈ ¹Ë¯Ë²ºÈ ºˆ
                                              y ′∗             g′       y′
                   →    →                     →    →                         x                     x′               x∗                    x ′∗
              {O, g1 , g 2 } } {O, g1′ , g 2′ } ˆºÈ                       = S                    Ò                 = S                     
                                                                             y                     y′               y∗                    y ′∗
          
          º°ˆÈmã««mȹº°ãËÓÒ²°ººˆÓº ËÓÒ«m¹Ë¯mºËÒ¹¯ÒÓÒäÈ«mºmÓÒäÈÓÒË‚ˆ
          m˯ÎËÓÒË ˆËº¯Ëä©  º ÓËm©¯ºÎËÓÓº°ˆÒ äȈ¯Ò© ¹Ë¯Ë²ºÈ S  ˆº ˰ˆ 
                                                                  −1
          °‚Ë°ˆmºmÈÓÒËäȈ¯Ò© S                                      ¹ºã‚ÈË䈺
          
                                              x ′∗                           x′       x ′∗                              −1                      x′
                                      S            = A             S           ÒãÒ      = S                               A       S               
                                              y ′∗            g              y′       y ′∗                                        g             y′