Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 110 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
|¹¯ËËãËÓÒË

|¹Ë¯Èº¯
rAr
M
M
→→
=
ÓÈÏ©mÈË°«sqtnptuvwnéjzvévu˰ãÒm }Èκ®
Ë}ȯºmº® °Ò°ËäË }ºº¯ÒÓÈ
{, , }
Og g
12
→→
ºÓÏÈÈË°« Áº¯äãÈäÒ
xxy
yxy
=++
=++
αα β
αα β
11 12 1
21 22 2

{ äÈ¯ÒÓº® Áº¯äË ãÒÓˮө® º¹Ë¯Èº¯ äºÎË © ÏȹҰÈÓ m Ë
x
y
A
x
y
g
=+
β
β
1
2
 Ë äÈ¯ÒÈ
A
g
=
αα
αα
11 12
21 22
ÓÈÏ©mÈË°« äÈ¯ÒË® ãÒÓË®
Óººº¹Ë¯Èº¯È
A
mË}ȯºmº®°Ò°ËäË}ºº¯ÒÓÈ
{, , }Og g
12
→→

|¹¯ËËãËÓÒË

|¹Ë¯Èº¯
rAr
M
M
→→
=
ÓÈÏ©mÈË°« sqtnptu vltvévltu vwnéjzvévu
˰ãÒºÓºmãËmº¯«Ëº¹¯ËËãËÓÒÒ}¯ºäËºº
ββ
12
0
==

p°ãÒÎË
ββ
12
0
+>
ºÈ}º®º¹Ë¯Èº¯ÓÈÏ©mÈË°«tnvltvévltu
¯Òä˯

zãÒÓˮөäºÓº¯ºÓ©äº¹Ë¯Èº¯ÈäºÓº°«°«
º¹Ë¯Èº¯
A
Ë®°mÒË}ºº¯ºº°mºÒ°«}äÓºÎËÓÒ}ºº¯
ÒÓÈ ¯ÈÒ°mË}º¯È ¹¯ºº¯ÈÏÈ ÓÈ ÁÒ}°Ò¯ºmÈÓÓ©Ë Ë®°
mÒËãÓ©Ë Ò°ãÈ wº º¹Ë¯Èº¯ ÓÈÏ©mÈË°« Ùvwnéjzvévu
xjzq¹rvx¹uµÒãÒ¹¯º°ºÙxjzqnurvx¹uµÒÒäËËäÈ
¯Ò
A
g
=
κ
κ
1
2
0
0
 Ë Ò°ãÈ
κ
Ò
κ
rvë{{q|qntz
xjzq¹
 º¹Ë¯Èº¯ vézvmvtjstvmv wévnrzqévkjtq¹¯ÈÒ°mË}º¯ºm
ºË} ¹ãº°}º°Ò ÓÈ ÓË}ºº¯ÏÈÈÓÓº° ¹¯º²º«
˯ËÏÓÈÈãº}ºº¯ÒÓÈ
˺¯ËäÈ

iã«ãÒÓˮӺººÓº¯ºÓººº¹Ë¯Èº¯È
A
°¹¯ÈmËãÒm©°ººÓºËÓÒ«

°

()

,,
Ar r Ar Ar r r
12 1 2 12
→→
+= +

°

()
Ar Ar
λλ
→→
=
,,
r
λ
iº}ÈÏÈËã°mº
{°¹¯ÈmËãÒmº°Òm˯ÎËÓÒ«˺¯Ëä©ËÒä°«Ó˹º°¯Ë°mËÓÓº®¹¯ºm˯}º®
Ò°¹ºãÏ«¹¯ÈmÒãÈË®°mÒ«°äÈ¯ÒÈäÒ
 Ë }  Ò Ò  } È Á Ë  ¯ ©  m © °  Ë ®  ä È ˆ Ë ä È ˆ Ò } Ò  l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                       →          →
 |¹¯ËËãËÓÒË          |¹Ë¯Èˆº¯ rM ∗ = A rM  ÓÈÏ©mÈˈ°« sqtnpt€u vwnéjzvévu ˰ãÒ m }Èκ®
 
                                                                                       →    →
                       Ë}ȯˆºmº® °Ò°ˆËäË }ºº¯ÒÓȈ {O, g1 , g 2 }  ºÓ ÏÈÈˈ°« Áº¯ä‚ãÈäÒ
                         x ∗ = α11 x + α12 y + β1
                         ∗                        
                         y = α 21 x + α 22 y + β2
           
           { äȈ¯ÒÓº® Áº¯äË ãÒÓˮө® º¹Ë¯Èˆº¯ äºÎˈ ­©ˆ  ÏȹҰÈÓ m mÒË
     x∗              x   β1                                                    α11 α12
        = A           +             Ë äȈ¯ÒÈ A                    =              ÓÈÏ©mÈˈ°« äȈ¯ÒË® ãÒÓË®
     y∗          g   y   β2                                            g       α 21 α 22
                                                                                            →   →
Óººº¹Ë¯Èˆº¯È A mË}ȯˆºmº®°Ò°ˆËäË}ºº¯ÒÓȈ {O, g1 , g 2 } 
       
       
                                        →            →
 |¹¯ËËãËÓÒË          |¹Ë¯Èˆº¯ rM ∗ = A rM  ÓÈÏ©mÈˈ°« sqtnpt€u vltvévlt€u vwnéjzvévu
 
                       ˰ãÒºÓ‚ºmãˈmº¯«Ëˆº¹¯ËËãËÓÒ Ò}¯ºäˈºº β1 = β2 = 0 
                       p°ãÒÎË β1 + β2 > 0 ˆºˆÈ}º®º¹Ë¯Èˆº¯ÓÈÏ©mÈˈ°«tnvltvévlt€u
           
           
 ¯Òä˯               zãÒÓˮөäºÓº¯ºÓ©äº¹Ë¯Èˆº¯È予Ӻ°«ˆ°«
                
                               º¹Ë¯Èˆº¯ A Ë®°ˆmÒË}ºˆº¯ºº°mº҈°«}‚äÓºÎËÓÒ }ºº¯
                                  ÒÓȈ ¯È҂°mË}ˆº¯È ¹¯ºº­¯ÈÏÈ ÓÈ ÁÒ}°Ò¯ºmÈÓÓ©Ë Ë®°ˆ
                                  m҈Ëã Ó©Ë Ò°ãÈ wˆºˆ º¹Ë¯Èˆº¯ ÓÈÏ©mÈˈ°« Ùvwnéjzvévu
                                  x jzq¹rvx¹uµÒãÒ¹¯º°ˆºÙx jzqnurvx¹uµÒÒäËˈäȈ
                                                               κ1 0
                                     ¯Ò‚       A        =          Ë Ò°ãÈ κ Ò κ  rvë{{q|qntz€
                                                       g        0 κ2
                                  x jzq¹
                                       
                                       
                                º¹Ë¯Èˆº¯ vézvmvtjstvmv wévnrzqévkjtq¹ ¯È҂°mË}ˆº¯ºm
                                  ˆºË} ¹ãº°}º°ˆÒ ÓÈ ÓË}ºˆº¯‚  ÏÈÈÓӂ  º°  ¹¯º²º«‚ 
                                  ˯ËÏÓÈÈãº}ºº¯ÒÓȈ
           
           
 ‘˺¯ËäÈ              iã«ãÒÓˮӺººÓº¯ºÓººº¹Ë¯Èˆº¯È A °¹¯ÈmËãÒm©°ººˆÓºËÓÒ«
                                                        →       →         →      →           → →
                       ° A ( r1 + r2 ) = A r1 + A r2 ,            ∀ r1 , r2 
                                                                   →            →           →
                       ° A ( λ r ) = λ A r              , ∀ r ,λ 
           
     iº}ÈÏȈËã°ˆmº
      
          {°¹¯ÈmËãÒmº°ˆÒ‚ˆm˯ÎËÓÒ«ˆËº¯Ëä©‚­ËÒä°«Ó˹º°¯Ë°ˆmËÓÓº®¹¯ºm˯}º®
          Ò°¹ºã ς«¹¯ÈmÒãÈË®°ˆmÒ«°äȈ¯ÒÈäÒ