Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 109 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã

¯Ëº¯ÈϺmÈÓÒ«¹ãº°}º°Ò
|¹¯ËËãËÓÒË

|º¯ÈÎËÓÒË
A
ˆ
:P
Q
ÓÈÏ©mÈË°«kojqutvvltvotj·tu˰ãÒ}ÈÎÈ«
º}È¹ãº°}º°Ò
Q
ÒäËË¹¯ºº¯ÈÏÒ¹¯ÒºäËÒÓ°mËÓÓ©®
|¹¯ËËãËÓÒË

|º¯ÈÎËÓÒËä viéjztu mÏÈÒäÓººÓºÏÓÈÓºä ºº¯ÈÎËÓÒ
QPA
:
ˆ
 ÓÈÏ©mÈË°« ºº¯ÈÎËÓÒË
PQA
:
ˆ
1
È}ºËºã« }Èκ®
º}Ò
M
¹ãº°}º°Ò
P
ÒäËËä˰º
1
ˆ
A ( A
ˆ
M)=M

|¹¯ËËãËÓÒË

|º¯ÈÎËÓÒË
A
ˆ
¹ãº°}º°Ò
P
m°Èä°Ë« ÓÈÏ©mÈË°«wénviéjovkjtqnu
¹ãº°}º°Ò
P

|¹¯ËËãËÓÒË

º°ã˺mÈËãÓºË m©¹ºãÓËÓÒË ¹¯Ëº¯ÈϺmÈÓÒ®
M
A
ˆ
M
 Ò
M’
B
ˆ
M

ÓÈÏ©mÈË°«wévqoknlntqnuqsqrvuwvoq|qnpªÒ²¹¯Ëº¯ÈϺmÈÓÒ®
¯ºÒÏmËËÓÒËº¹Ë¯Èº¯ºmÏȹҰ©mÈË°«mË
MABM
ˆ
ˆ
=
~ÈäËÒäºmº
Ëä°ãÈËªº¹¯ºÒÏmËËÓÒËÓË}ºääÈÒmÓºÓºȰ°ºÒÈÒmÓº
|¹¯ËËãËÓÒË

º}È¹ãº°}º°Ò
P
¹Ë¯ËmºÒäÈ«¹¯Ëº¯ÈϺmÈÓÒËä
A
ˆ
°ÈäÈm°Ë«ÓÈ
Ï©mÈË°« tnwvlkqtvp zv·rvp ls¹
A
ˆ
 lÓºÎ˰mº ÓÈ
P
°º°º«ËË ÒÏ
Ó˹ºmÒÎÓ©²ºË}ã«
A
ˆ
ÓÈÏ©mÈË°«tnwvlkqtuls¹
A
ˆ

lÓºÎ˰mººË}
P
¹Ë¯Ë²º«ËË¹¯Ò
A
ˆ
°Èäºm°Ë«ÓÈÏ©mÈ˰«qtkj
éqjtztuutvnxzkvuwénviéjovkjtq¹
A
ˆ

ÒÓˮөËº¹Ë¯Èº¯©ÓÈ¹ãº°}º°Ò
° ÓÈ ¹ãº°}º°Ò ° Ë}ȯºmº® °Ò°Ë亮 }ºº¯ÒÓÈ
{, , }
Og g
12
→→
}Èκ® ËË
º}Ë
M
¹º°ÈmãËÓÈmºÓºÏÓÈÓºË°ººmË°mÒËº}È
M
º˰°ºãȰӺº¹¯ËË
ãËÓÒÏÈÈÓº¹¯Ëº¯ÈϺmÈÓÒËªº®¹ãº°}º°Ò°¯ÈÒ°mË}º¯©ªÒ²ºË}
°
r
x
y
M
=
Ò
r
x
y
M
=
ºÈ}ºº¯ÒÓÈ©
x
Ò
y
ÓË}ºº¯©äÒÁÓ}Ò«äÒº
x
Ò
y
xFxy
yFxy
x
y
=
=
(,)
(,)
Ò ¹ººä ¯ÈmËÓ°mº
x
y
Fxy
Fxy
x
y
=
(,)
(,)
äºÎÓº ¯È°°äÈ¯ÒmÈ}È}
º¹Ò°ÈÓÒËm°Ò°ËäË}ºº¯ÒÓÈ
{, , }Og g
12
→→
º¹Ë¯Èº¯È«mã«˺°«ÈÓÓ©ä¹¯Ëº¯ÈϺ
mÈÓÒËä¹ãº°}º°Ò
iÈãËË ä© Ëä ¯È°°äÈ¯ÒmÈ ȰÓ©Ë Óº mÈÎÓ©Ë ã« ¹¯ÒãºÎËÓÒ® ©
ÁÓ}Ò®
Fxy
x
(,)
Ò
)[\
\
(,)

cÈÏËã
¯Ëº­¯ÈϺmÈÓÒ«¹ãº°}º°ˆÒ



    |¹¯ËËãËÓÒË         |ˆº­¯ÈÎËÓÒË Â :P → Q ÓÈÏ©mÈˈ°« kojqutv vltvotj·t€u ˰ãÒ }ÈÎÈ«
    
                         ˆº}ȹ㺰}º°ˆÒQÒäËˈ¹¯ºº­¯ÈÏÒ¹¯ÒˆºäËÒÓ°ˆmËÓÓ©®
             
    |¹¯ËËãËÓÒË         |ˆº­¯ÈÎËÓÒËä                 viéjzt€u            mÏÈÒäÓººÓºÏÓÈÓºä‚                        ºˆº­¯ÈÎËÓÒ 
    
                                                                                        ˆ −1
                         Aˆ : P → Q  ÓÈÏ©mÈˈ°« ºˆº­¯ÈÎËÓÒË A : Q → P  ˆÈ}ºË ˆº ã« }Èκ®
                         ˆº}ÒM¹ãº°}º°ˆÒPÒäËˈä˰ˆº Aˆ −1 (  M)=M
             
    |¹¯ËËãËÓÒË         |ˆº­¯ÈÎËÓÒË Â  ¹ãº°}º°ˆÒ P m °Èä‚ °Ë­« ÓÈÏ©mÈˈ°« wénviéjovkjtqnu
    
                         ¹ãº°}º°ˆÒP 
             
    |¹¯ËËãËÓÒË         º°ã˺mȈËã ÓºË m©¹ºãÓËÓÒË ¹¯Ëº­¯ÈϺmÈÓÒ® M  M  Ò M’  B̂ M
    
                         ÓÈÏ©mÈˈ°«wévqoknlntqnu qsqrvuwvoq|qnp ªˆÒ²¹¯Ëº­¯ÈϺmÈÓÒ®
             
       ¯ºÒÏmËËÓÒ˺¹Ë¯Èˆº¯ºmÏȹҰ©mÈˈ°«mmÒË M ′′ = Bˆ Aˆ M ~ÈäˈÒ䈺mº­
Ëä°ã‚È˪ˆº¹¯ºÒÏmËËÓÒËÓË}ºä䂈ȈÒmÓºÓºȰ°ºÒȈÒmÓº
       
    |¹¯ËËãËÓÒË         ‘º}ȹ㺰}º°ˆÒ P¹Ë¯ËmºÒäÈ«¹¯Ëº­¯ÈϺmÈÓÒËä  °ÈäÈm°Ë­«ÓÈ
    
                         Ï©mÈˈ°« tnwvlkq tvp zv·rvp ls¹   lÓºÎ˰ˆmº ÓÈ P °º°ˆº«ËË ÒÏ
                         Ó˹ºmÒÎÓ©²ˆºË}ã« Â ÓÈÏ©mÈˈ°«tnwvlkq t€uls¹  
                         
                         lÓºÎ˰ˆmº ˆºË} P¹Ë¯Ë²º«Ë˹¯Ò  °Èäºm°Ë­«ÓÈÏ©mÈˈ°«qtkj
                         éqjtzt€uutv nxzkvuwénviéjovkjtq¹ Â 
             
             
             
             
ÒÓˮө˺¹Ë¯Èˆº¯©Óȹ㺰}º°ˆÒ
             
             
             
                                                                                                                     →    →
             ‚°ˆ  ÓÈ ¹ãº°}º°ˆÒ ° Ë}ȯˆºmº® °Ò°ˆË亮 }ºº¯ÒÓȈ {O, g1 , g 2 }  }Èκ® ËË
ˆº}Ë M ¹º°ˆÈmãËÓÈmºÓºÏÓÈӺ˰ººˆmˈ°ˆmÒˈº}È M ∗ ˆº˰ˆ °ºãȰӺº¹¯ËË
ãËÓÒ ÏÈÈÓº¹¯Ëº­¯ÈϺmÈÓÒ˪ˆº®¹ãº°}º°ˆÒ‚°ˆ ¯È҂°mË}ˆº¯©ªˆÒ²ˆºË}
         →        x      →     x∗
°‚ˆ  rM =          Ò rM ∗ = ∗ ˆºÈ}ºº¯ÒÓȈ© x ∗ Ò y ∗ ­‚‚ˆÓË}ºˆº¯©äÒÁ‚Ó}Ò«äÒºˆ
                  y            y
            x ∗ = Fx ( x , y )                         x∗    Fx ( x , y )
x  Ò y   ∗                    Ò ¹ºˆºä‚ ¯ÈmËÓ°ˆmº   ∗ = F ( x , y )  äºÎÓº ¯È°°äȈ¯ÒmȈ  }È}
             y = Fy ( x , y )                          y      y
                                                           →    →
º¹Ò°ÈÓÒËm°Ò°ˆËäË}ºº¯ÒÓȈ {O, g1 , g 2 } º¹Ë¯Èˆº¯È«mã« Ëº°«ÈÓө乯˺­¯ÈϺ
mÈÓÒËä¹ãº°}º°ˆÒ
       
       iÈãËË ä© ­‚Ëä ¯È°°äȈ¯ÒmȈ  ȰˆÓ©Ë Óº mÈÎÓ©Ë ã« ¹¯ÒãºÎËÓÒ® mÒ©
Á‚Ó}Ò® Fx ( x , y ) Ò )\ ([ , \)