Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 107 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã

¯Ëº¯ÈϺmÈÓÒ«¹ãº°}º°Ò
vã˰mÒË

lÈ¯ÒÈ¹Ë¯Ë²ºÈººÓººº¯ºÓº¯äÒ¯ºmÈÓÓººÈÏÒ°ÈÓÈ¹ãº°}º
°Ò}¯ºäº¯ººÓÈãÓÈ«
iº}ÈÏÈËã°mº
{©ãº¹º}ÈÏÈÓººäÈ¯ÒÈ¹Ë¯Ë²ºÈ
S
ººÓº®º¯ºÓº¯äÒ¯ºmÈÓÓº®
°Ò°Ëä©}ºº¯ÒÓÈÓÈ¹ãº°}º°Ò}¯º®äºÎËÒäËºÒÓÒÏm²°ãË
Ò²ºm
cos sin
sin cos
ϕϕ
ϕϕ
ÒãÒ
cos sin
sin cos
ϕϕ
ϕϕ
Ë
ϕ
ºãäËÎ¹Ë¯m©äÒ
ÈÏÒ°Ó©äÒ mË}º¯ÈäÒ sº ºÈ äÈ¯ÒÈ ¹Ë¯Ë²ºÈ
S
º¯ººÓÈãÓÈ« m °Òã
˺¯Ëä©
vã˰mÒËº}ÈÏÈÓº

 |¹Ë¯Èº¯© Ò ÁÓ}ÒºÓÈã© |º¯ÈÎËÓÒ« Ò ¹¯Ëº¯ÈϺmÈÓÒ«
¹ãº°}º°Ò
{mºÒäºËm}¯°ËäÈËäÈÒ˰}ººÈÓÈãÒÏÈ¹ºÓ«ÒËÁÓ}ÒÒ}È}¹¯ÈmÒãÈ°
ÈÓÈmãÒmÈ˺ ºÓºÏÓÈÓºË °ººmË°mÒË äËÎ Ò°ãºä ¹¯ÒÓÈãËÎÈÒä ºãȰÒ
º¹¯ËËãËÓÒ«Ò Ò°ãºä ¹¯ÒÓÈãËÎÈÒä äÓºÎ˰m ÏÓÈËÓÒ® äºÎË ©˰˰mËÓ
Ó©äº¯ÈϺä ººËÓº ÓÈ°ãÈ® ÈºãȰº¹¯ËËãËÓÒ«ÒºãȰÏÓÈËÓÒ®ÎË
ÓË«mã«°«Ò°ãºm©äÒäÓºÎ˰mÈäÒ
|¹¯ËËãËÓÒË

rËäºmº¯ÒºÏÈÈÓvwnéjzvé
A
ˆ
lnpxzkyíqptjutvnxzkn
xv otj·ntq¹uq k utvnxzkn
Θ
 ˰ãÒ }ÈÏÈÓº ¹¯ÈmÒãº ¹º }ºº¯ºä
}ÈκäªãËäËÓ äÓºÎ˰mÈ
¹º°ÈmãËÓm°ººmË°mÒËËÒÓ°mËÓ
Ó©®ªãËäËÓÒÏäÓºÎ˰mÈ
Θ

vÒämºãÒ˰}Ò ¯ËÏãÈ Ë®°mÒ« º¹Ë¯Èº¯È
A
ˆ
ººÏÓÈÈË°« È}
Θ=
yxxAy ;,
ˆ
wãËäËÓ
y mªºä°ãÈËÓÈÏ©mÈË°«viéjovuªãËäËÓÈx
ªãË
äËÓ
x
wévviéjovuªãËäËÓÈ
y

|¹¯ËËãËÓÒË

p°ãÒ
Θ
visjxzotj·ntqpÓË}ºº¯ººº¹Ë¯Èº¯È«mã«Ë°«Ò°ãº
m©ääÓºÎ˰mºäººmº¯«ºÓÈäÓºÎ˰mË
ÏÈÈÓ{ytr|qvtjs
nÓ}ÒºÓÈã© º©Óº ººÏÓÈÈ°« È} ÎË }È} Ò ÁÓ}ÒÒ Óȹ¯Òä˯
yxx=∈
Φ
(),

cÈÏËã
¯Ëº­¯ÈϺmÈÓÒ«¹ãº°}º°ˆÒ



    vã˰ˆmÒË           lȈ¯Òȹ˯˲ºÈºˆºÓººº¯ˆºÓº¯äÒ¯ºmÈÓÓºº­ÈÏÒ°ÈÓȹ㺰}º
                  °ˆÒ}¯‚ºä‚º¯ˆººÓÈã ÓÈ«
             
       iº}ÈÏȈËã°ˆmº
             
             {­©ãº¹º}ÈÏÈÓºˆºäȈ¯Òȹ˯˲ºÈ S ºˆºÓº®º¯ˆºÓº¯äÒ¯ºmÈÓÓº®
             °Ò°ˆËä©}ºº¯ÒÓȈÓȹ㺰}º°ˆÒ}¯‚º®äºÎˈÒäˈ ºÒÓÒÏm‚²°ãË‚ 
                                   cosϕ       − sin ϕ                 cosϕ        sin ϕ
             Ò²mÒºm                                  ÒãÒ                         Ë ϕ‚ºãäË΂¹Ë¯m©äÒ
                                   sin ϕ        cosϕ                  sin ϕ     − cosϕ
            ­ÈÏÒ°Ó©äÒ mË}ˆº¯ÈäÒ sº ˆºÈ äȈ¯ÒÈ ¹Ë¯Ë²ºÈ S  º¯ˆººÓÈã ÓÈ« m °Òã‚
            ˆËº¯Ëä©
            
        vã˰ˆmÒ˺}ÈÏÈÓº
            
            
            
            
 |¹Ë¯Èˆº¯© Ò Á‚Ó}ÒºÓÈã© |ˆº­¯ÈÎËÓÒ« Ò ¹¯Ëº­¯ÈϺmÈÓÒ«
        ¹ãº°}º°ˆÒ
       
       
       
       {mºÒäºËm}‚¯°ËäȈËäȈÒ˰}ººÈÓÈãÒÏȹºÓ«ˆÒËÁ‚Ó}ÒÒ }È}¹¯ÈmÒãÈ‚°
ˆÈÓÈmãÒmÈ Ëº ºÓºÏÓÈÓºË °ººˆmˈ°ˆmÒË äË΂ Ò°ãºä ¹¯ÒÓÈãËÎȝÒä º­ãȰˆÒ
º¹¯ËËãËÓÒ« Ò Ò°ãºä ¹¯ÒÓÈãËÎȝÒä äÓºÎ˰ˆm‚ ÏÓÈËÓÒ®  äºÎˈ ­©ˆ  ˰ˆË°ˆmËÓ
Ó©ä º­¯ÈϺä º­º­ËÓº ÓÈ °ã‚È® }ºÈ º­ãȰˆ  º¹¯ËËãËÓÒ« Ò º­ãȰˆ  ÏÓÈËÓÒ® ‚ÎË
ÓË«mã« ˆ°«Ò°ãºm©äÒäÓºÎ˰ˆmÈäÒ
       
       
    |¹¯ËËãËÓÒË         r‚Ëäºmº¯Òˆ ˆºÏÈÈÓvwnéjzvé  lnpxzkyíqptjutv nxzkn Ω
    
                         xv otj·ntq¹uq k utv nxzkn Θ ˰ãÒ ‚}ÈÏÈÓº ¹¯ÈmÒ㺠¹º }ºˆº¯ºä‚
                         }ÈÎºä‚ ªãËäËӈ‚ äÓºÎ˰ˆmÈ Ω ¹º°ˆÈmãËÓ m °ººˆmˈ°ˆmÒË ËÒÓ°ˆmËÓ
                         Ó©®ªãËäËӈÒÏäÓºÎ˰ˆmÈΘ
             
             vÒämºãÒ˰}Ò                ¯Ëς㠈Ȉ           Ë®°ˆmÒ«           º¹Ë¯Èˆº¯È                  º­ºÏÓÈÈˈ°«              ˆÈ}
y = Aˆ x , x ∈ Ω ; y ∈ Θ wãËäËӈ y mªˆºä°ã‚ÈËÓÈÏ©mÈˈ°«viéjovuªãËäËӈÈ xªãË
äËӈxwévviéjovuªãËäËӈÈy
             
             
    |¹¯ËËãËÓÒË         p°ãÒ Θvisjxzotj·ntqpÓË}ºˆº¯ººº¹Ë¯Èˆº¯È«mã«Ëˆ°«Ò°ãº
    
                         m©ääÓºÎ˰ˆmºäˆººmº¯«ˆˆºÓÈäÓºÎ˰ˆmËΩÏÈÈÓ{ytr|qvtjs
          
          
          n‚Ó}ÒºÓÈã© º­©Óº º­ºÏÓÈÈ ˆ°« ˆÈ} ÎË }È} Ò Á‚Ó}ÒÒ Óȹ¯Òä˯
y = Φ ( x ) , x ∈Ω