Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 105 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã

¯Ëº¯ÈϺmÈÓÒ«¹ãº°}º°Ò
°v ¯º® °º¯ºÓ© ÒÏ ¹º°ãËÓ˺ ¯ÈmËÓ°mÈ ¹ºãÈËä º
Ax Bc
=
1
ÒÈÓÈãºÒÓº
BAxc
−−
=
11

°
ÒÈ« ¹ºãËÓÓº ¯ÈmËÓ°mÈ
()
AB x c
=
1
Ò
BAxc
−−
=
11

¹¯Ò²ºÒä m °Òã °mº®°mÈ Ò°¯ÒÒmÓº°Ò äÈ¯ÒÓºº ¹¯ºÒÏmËËÓÒ« }
°ººÓºËÓÒ
(( ) )
AB B A x o
−−
−=
1
11
 }ºº¯ºË ¹º ãËääË
 m  ¹¯ºÒÏmºãÓº°Ò °ºãÈ
x
 ºÏÓÈÈË º äÈ¯ÒÈ
()
AB B A
−−
1
11
ÓãËmÈ«
˺¯ËäÈº}ÈÏÈÓÈ

ÈÈ

Íévknéqzzvlnxzkv
()()
TT
AA
=
1
1

|¹¯ËËãËÓÒË

sËm©¯ºÎËÓÓÈ« }mȯÈÓÈ« äÈ¯ÒÈ
Q
 ã« }ºº¯º®
QQ
=
1T

ÓÈÏ©mÈË°«vézvmvtjstvp
vmº®°mÈº¯ººÓÈãÓ©²äÈ¯ÒÒ¯ÈÒ²mÈÎÓ¯ºãmºäÓºÒ²¹¯ÒãºÎË
ÓÒ«²äºÎÓº°Áº¯äãÒ¯ºmÈmmÒË°ãËÒ²˺¯Ëä
˺¯ËäÈ

iã«º¯ººÓÈãÓº®äÈ¯Ò©
Q
°¹¯ÈmËãÒmº¯ÈmËÓ°mº
det Q 1

iº}ÈÏÈËã°mº
äÓºÎÈ«¯ÈmËÓ°mº
QQ
=
1T
¹º°ã˺mÈËãÓº°¹¯ÈmÈÒ°ãËmÈÓÈ
Q
ä©m
°Òã º¹¯ËËãËÓÒ«  ¹¯Ò²ºÒä } °ººÓºËÓÒ
QQ QQ E
TT
==

|}ÈÓȲºÒäº
det
2
1
Q
=
¹º°}ºã}
 º¹¯ËËãÒËã ¹¯ºÒÏmËËÓÒ« }mȯÈÓ©² äÈ¯ÒºÒÓÈ}ºmºº
¯ÈÏä˯È¯ÈmËÓ¹¯ºÒÏmËËÓÒº¹¯ËËãÒËãË®°ºäÓºÎÒËãË®
 º¹¯ËËãÒËãäÈ¯Ò©ÓËäËÓ«Ë°«¹¯ÒËË¯ÈÓ°¹ºÓÒ¯ºmÈÓÒÒ

det E = 1

˺¯ËäÈº}ÈÏÈÓÈ

cÈÏËã
¯Ëº­¯ÈϺmÈÓÒ«¹ãº°}º°ˆÒ



               °v     ¯‚º®          °ˆº¯ºÓ©               ÒÏ   ¹º°ãËÓ˺                 ¯ÈmËÓ°ˆmÈ      ¹ºã‚ÈËä            ˆº
                          −1                                                       −1            −1
                      A            x = B      c ÒÈÓÈãºÒÓº B                           A        x = c 
               
                                                                                                                      −1       −1
               °{©҈ȫ ¹ºãËÓÓº ¯ÈmËÓ°ˆmÈ ( A B ) −1 x = c  Ò B         A    x = c 
                    ¹¯Ò²ºÒä m °Òã‚ °mº®°ˆmÈ Ò°ˆ¯Ò­‚ˆÒmÓº°ˆÒ äȈ¯ÒÓºº ¹¯ºÒÏmËËÓÒ« }
                                                                             −1         −1
                   °ººˆÓº ËÓÒ  ( ( A                          B ) −1 − B         A          ) x = o  }ºˆº¯ºË ¹º ãËääË
                    m mÒ‚ ¹¯ºÒÏmºã Óº°ˆÒ °ˆºã­È                                         x  ºÏÓÈÈˈ ˆº äȈ¯ÒÈ
                                                 −1            −1
                   ( A             B ) −1 − B              A        ӂãËmÈ«
               
               
        ‘˺¯ËäȺ}ÈÏÈÓÈ
               
               
               
                                                                         −1 T               T −1
    ~ÈÈÈ               Íévknéqzzv lnxzkv ( A                          ) =( A               ) 
    
               
               
               
                                                                                                                                    −1        T
    |¹¯ËËãËÓÒË         sËm©¯ºÎËÓÓÈ« }mȯȈÓÈ« äȈ¯ÒÈ Q  ã« }ºˆº¯º®                                              Q          = Q 
    
                          ÓÈÏ©mÈˈ°«vézvmvtjstvp
       
       
       vmº®°ˆmȺ¯ˆººÓÈã Ó©²äȈ¯ÒÒ¯È Ò²mÈÎӂ ¯ºã mºäÓºÒ²¹¯ÒãºÎË
ÓÒ«²äºÎÓº°Áº¯ä‚ãÒ¯ºmȈ mmÒ˰ãË‚ Ò²ˆËº¯Ëä
       
       
       
    
    ‘˺¯ËäÈ              i㫺¯ˆººÓÈã Óº®äȈ¯Ò© Q °¹¯ÈmËãÒmº¯ÈmËÓ°ˆmº det Q = ±1 
    
               
       iº}ÈÏȈËã°ˆmº
               
                                                      −1            T
           äÓºÎÈ« ¯ÈmËÓ°ˆmº Q                           = Q  ¹º°ã˺mȈËã Óº °¹¯ÈmÈ Ò °ãËmÈ ÓÈ Q  ä© m
                                                                                                               T                     T
           °Òã‚ º¹¯ËËãËÓÒ«  ¹¯Ò²ºÒä } °ººˆÓº ËÓÒ                                             Q       Q = Q Q               = E 
           |ˆ}‚ÈÓȲºÒ䈺 det 2 Q = 1 ¹º°}ºã }‚
           
                                       º¹¯ËËã҈Ëã  ¹¯ºÒÏmËËÓÒ« }mȯȈө² äȈ¯Ò ºÒÓÈ}ºmºº
                                         ¯ÈÏä˯ȯÈmËÓ¹¯ºÒÏmËËÓÒ º¹¯ËËã҈ËãË®°ºäÓºÎ҈ËãË®
                               
                                       º¹¯ËËã҈Ëã äȈ¯Ò©ÓËäËӫˈ°«¹¯ÒËˈ¯ÈÓ°¹ºÓÒ¯ºmÈÓÒÒ
                               

                                       det E = 1 
               
        ‘˺¯ËäȺ}ÈÏÈÓÈ