Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 103 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã

¯Ëº¯ÈϺmÈÓÒ«¹ãº°}º°Ò
xb==
ξ
ξ
β
β
1
2
1
2
;;
A =
αα
αα
11 12
21 22

ÈËË¯ËËÓÒË˰ãÒ°˰mË
A
1
mmÒË
xAb=
1

¯Òä˯

nº¯äã© ¹Ë¯Ë²ºÈ º ºÓº® Ë}ȯºmº® °Ò°Ëä© }ºº¯ÒÓÈ } ¯º®
°¹ºäºäÈ¯ÒÓ©²º¹Ë¯ÈÒ®äº©ÏȹҰÈÓ©mmÒË
=
g
g
g
S
g
g
g
1
2
3
1
2
3
T
;
ξ
ξ
ξ
ξ
ξ
ξ
β
β
β
1
2
3
1
2
3
1
2
3
=
+S

Ë
S
äÈ¯ÒÈ¹Ë¯Ë²ºÈ
˺¯ËäÈ

jäËËä˰º°ººÓºËÓÒË
()
T
T
T
AB B A=

iº}ÈÏÈËã°mº
rËä¹¯Ë¹ºãÈÈº¯ÈÏä˯©äÈ¯Ò
A
Ò
B
È}ºm©º¹¯ºÒÏË
ÓÒ«äÈ¯Ò}ÈÏÈÓÓ©ËmÁº¯äãÒ¯ºm}Ë˺¯Ëä©m©¹ºãÓÒä©
°Ò°ãÈ
αβ
γ
ik kj ij
,,
˰ªãËäËÓ©äÈ¯Ò
A

B
Ò
CAB
=
°º
ºmË°mËÓÓººÈ°ºãȰӺº¹¯ËËãËÓÒ
γ
αβ
ij ik kj
k
l
=
=
1

sº°¯º®°º¯ºÓ©¹ºº¹¯ËËãËÓÒº¹Ë¯ÈÒÒ¯ÈÓ°¹ºÓÒ¯ºmÈÓÒ«
γ
αβ αβ βα
ij ji jk ki
k
l
kj ik
k
l
ik kj
k
l
TTTTT
== = =
===
∑∑
111

º}È°ºãȰӺºäÎËº¹¯ËËãËÓÒËãÈËäÏÈ}ãËÓÒËº°¹¯ÈmËãÒ
mº°Òm˯ÎËÓÒ«˺¯Ëä©
˺¯ËäÈº}ÈÏÈÓÈ

cÈÏËã
¯Ëº­¯ÈϺmÈÓÒ«¹ãº°}º°ˆÒ



                                                            ξ1                               β1                    α11 α12
                                                   x =               ;    b =                      ; A =                    
                                                            ξ2                               β2                    α 21 α 22
                                                                                              
                                                                                              −1                                     −1
                         ÈËË¯Ë ËÓÒË ˰ãÒ°‚Ë°ˆm‚ˈ                               A             mmÒË              x = A        b 
             
             
    ¯Òä˯              nº¯ä‚ã© ¹Ë¯Ë²ºÈ ºˆ ºÓº® Ë}ȯˆºmº® °Ò°ˆËä© }ºº¯ÒÓȈ } ¯‚º®
                    °¹ºäº äȈ¯ÒÓ©²º¹Ë¯ÈҮ亂ˆ­©ˆ ÏȹҰÈÓ©mmÒË
                         
                                                     →                   →
                                                     g1′                 g1                        ξ1          ξ1′   β1
                                                     →               T   →
                                                     g2′ = S             g2          ;             ξ2 = S      ξ2′ + β2 
                                                     →                   →
                                                     g 3′                g3                        ξ3          ξ3′   β3
                                                                                              
                         Ë S äȈ¯Òȹ˯˲ºÈ
             
             
             
                                                                                                        T
    ‘˺¯ËäÈ             jäËˈä˰ˆº°ººˆÓºËÓÒË ( A                                 B )T = B                 A    T
                                                                                                                        
    
             
             
       iº}ÈÏȈËã°ˆmº
             
             r‚Ë乯˹ºãÈȈ ˆº¯ÈÏä˯©äȈ¯Ò A Ò B ˆÈ}ºm©ˆº¹¯ºÒÏmËË
             ÓÒ«äȈ¯Ò‚}ÈÏÈÓÓ©ËmÁº¯ä‚ãÒ¯ºm}ˈ˺¯Ëä©m©¹ºãÓÒä©
             
             ‚°ˆ Ò°ãÈ αik , βkj , γ ij ˰ˆ ªãËäËӈ©äȈ¯Ò A  B Ò C = A                                                        B °º
             ºˆmˈ°ˆmËÓÓº‘ºÈ°ºãȰӺº¹¯ËËãËÓÒ 
             
                                                                               l
                                                                     γ ij = ∑ αik βkj 
                                                                              k =1
                                                  
             sº°¯‚º®°ˆº¯ºÓ©¹ºº¹¯ËËãËÓÒ º¹Ë¯ÈÒÒˆ¯ÈÓ°¹ºÓÒ¯ºmÈÓÒ«
                                                  
                                                                 l                       l               l
                                              γ ijT = γ ji = ∑ α jk βki = ∑ α kjT βikT = ∑ βikTα kjT 
                                                              k =1                   k =1               k =1
                                                 
            ºˆ}‚ȰºãȰӺˆºä‚Î˺¹¯ËËãËÓÒ ËãÈËäÏÈ}ã ËÓÒ˺°¹¯ÈmËãÒ
            mº°ˆÒ‚ˆm˯ÎËÓÒ«ˆËº¯Ëä©
            
        ‘˺¯ËäȺ}ÈÏÈÓÈ