Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 104 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
~ÈäËÒäº°ºãȰӺ¹¯ÈmÒã¯ÈÓ°¹ºÓÒ¯ºmÈÓÒ«¹¯ºÒÏmËËÓÒ«äÈ¯Ò¯ÈmËÓ
°mº
=
g
g
g
S
g
g
g
1
2
3
1
2
3
T
äºÎË©ÏȹҰÈÓºmmÒË
′′
=
→→ →→
ggg gggS
123 123

iã« ÈãÓˮҲ ¯È°°ÎËÓÒ® ÓÈä Ë ¹ºãËÏÓº °ãËËË m°¹ºäºÈËãÓºË
m˯ÎËÓÒË
ËääÈ

° ¹¯ºÒÏmËËÓÒË }mȯÈÓº®äÈ¯Ò©
Q
ÓÈ ¹¯ºÒÏmºãÓ©®
n
}ºä¹ºÓËÓÓ©®
°ºãË
x
˰ ÓãËmº®
n
}ºä¹ºÓËÓÓ©®
°ºãË
ºÈäÈ¯ÒÈ
Q
ÓãËmÈ«
iº}ÈÏÈËã°mº

°
Q
n
n
nn nn
=
ωω ω
ωω ω
ωω ω
11 12 1
21 22 2
12
...
...
... ... ... ...
...
 {©˯Ëä m ˰mË
x
°ºãËmÒÈ
0
1
0
...
...

ËËÒÓÒÈ °ºÒm °¯º}Ë°Óºä˯ºä
i

ºÈ
Q
i
ii
ni
0
1
0
0
0
0
1
...
...
...
...
...
...
==
ω
ω
ω
Ò m°Òã
¹¯ºÒÏmºãÓº°Ò
i
¹¯Ò²ºÒä } ÏÈ}ãËÓÒº°¹¯ÈmËãÒmº°Ò m˯ÎËÓÒ«
ãËää©
ËääÈº}ÈÏÈÓÈ

˺¯ËäÈ

iã« ÓËm©¯ºÎËÓÓ©² ºÒÓÈ}ºmºº ¯ÈÏä˯È }mȯÈÓ©² äÈ¯Ò
A
Ò
B
°¹¯ÈmËãÒmº°ººÓºËÓÒË
()AB B A
=
1
1
1

iº}ÈÏÈËã°mº
°°¹¯ºÒÏmËËÓÒËäÈ¯Ò©
()AB
1
ÓÈÓË}ºº¯©®
n
}ºä¹ºÓËÓÓ©®
°ºãË
x
˰°ºãË
c
ºÈ
()AB x c
=
1
ÒãÒººÎË
°ÈäºË
xABc
=
°äº¹¯ËËãËÓÒ«Ò
 Ë }  Ò Ò  } È Á Ë  ¯ ©  m © °  Ë ®  ä È ˆ Ë ä È ˆ Ò } Ò  l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          ~ÈäˈÒ䈺°ºãȰӺ¹¯ÈmÒよ¯ÈÓ°¹ºÓÒ¯ºmÈÓÒ«¹¯ºÒÏmËËÓÒ«äȈ¯Ò¯ÈmËÓ
           →                →
          g1′              g1
           →           T    →                                                    →     →      →         →     →         →
°ˆmº     g2′ = S          g2 äºÎˈ­©ˆ ÏȹҰÈÓºmmÒË g1′                         g2′   g 3′ = g1        g2        g3   S 
           →                →
          g 3′             g3
       
       
       iã« Èã ÓË® Ò² ¯È°°‚ÎËÓÒ® ÓÈä ­‚ˈ ¹ºãËÏÓº °ãË‚ ËË m°¹ºäºȈËã ÓºË
‚ˆm˯ÎËÓÒË
       
       
 ËääÈ                ‚°ˆ  ¹¯ºÒÏmËËÓÒË }mȯȈӺ® äȈ¯Ò© Q  ÓÈ ¹¯ºÒÏmºã Ó©® n
 
                       }ºä¹ºÓËӈө® °ˆºã­Ë x  ˰ˆ  ӂãËmº® n}ºä¹ºÓËӈө® °ˆºã­Ë
                       ˆºÈäȈ¯ÒÈ Q ӂãËmÈ«
        
  iº}ÈÏȈËã°ˆmº
                                                                                                     0
                    ω11 ω12                    ... ω1n
                                                                                                    ...
                    ω 21 ω 22                  ... ω 2 n
         ‚°ˆ  Q =                                      {©­Ë¯Ëä m }È˰ˆmË x  °ˆºã­Ë mÒÈ 1 
                     ...  ...                  ... ...
                                                                                                    ...
                    ω n1 ω n 2                 ... ω nn
                                                                                                     0
                                                                                              0       ω1i    0
                                                                                             ...      ...   ...
         Ë ËÒÓÒÈ °ˆºÒˆ m °ˆ¯º}Ë ° Óºä˯ºä i  ‘ºÈ Q                           1 =     ωii = 0  Ò m °Òã‚
                                                                                             ...      ...   ...
                                                                                             0        ω ni   0
         ¹¯ºÒÏmºã Óº°ˆÒ i  ¹¯Ò²ºÒä } ÏÈ}ã ËÓÒ  º °¹¯ÈmËãÒmº°ˆÒ ‚ˆm˯ÎËÓÒ«
         ãËää©
     
     ËääȺ}ÈÏÈÓÈ
           
           
 

 ‘˺¯ËäÈ              iã« ÓËm©¯ºÎËÓÓ©² ºÒÓÈ}ºmºº ¯ÈÏä˯È }mȯȈө² äȈ¯Ò A 
                                                                                                  −1
                       Ò B °¹¯ÈmËãÒmº°ººˆÓºËÓÒË (                         A     B ) −1 = B              A    −1
                                                                                                                        
           
    iº}ÈÏȈËã°ˆmº
           
           °‚°ˆ ¹¯ºÒÏmËËÓÒËäȈ¯Ò© ( A                           B ) −1 ÓÈÓË}ºˆº¯©®n}ºä¹ºÓËӈө®
                 °ˆºã­Ë x ˰ˆ °ˆºã­Ë c ‘ºÈ ( A                             B ) −1 x = c ÒãÒˆºˆºÎË
                 °ÈäºË x = A               B    c  °äº¹¯ËËãËÓÒ«Ò