Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 101 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã

¯Ëº¯ÈϺmÈÓÒ«¹ãº°}º°Ò
°¯ºÒÏmËËÓÒË äÈ¯Ò ºãÈÈË °mº®°mºä jxxv|qjzqktvxzq
ABC ABC()()=

°
¯ºÒÏmËËÓÒË äÈ¯Ò ºãÈÈË °mº®°mºä lqxzéqiyzqktvxzq
AB C AB AC()+= +

|äËÒäËË¯ÈÏº¹¯ºÒÏmËËÓÒËm²äÈ¯Ò°˰mËºã}ººÈ}ºÈ
Ò°ãº°ºãºm¹Ë¯mºº°ºäÓºÎÒËã«¯ÈmÓºÒ°ã°¯º}mº¯ºº
Ë}ºËÒ°«ºäÓºÎËÓÒË}È}°¹¯ÈmÈÈ}Ò°ãËmÈãº®äÈ¯Ò©
A
ÓÈ ¹º²º«˺ ¯ÈÏä˯È ËÒÓÒÓ äÈ¯Ò
E
°ä ¹ ÈË m ¯ËÏãÈË  ÎË
°ÈääÈ¯Ò
A

|¹¯ËËãËÓÒË

lÈ¯ÒÈ
A
1
ÓÈÏ©mÈË°« viéjztvp }mȯÈÓº® äÈ¯ÒË
A
 ˰ãÒ
ÒäËä˰º¯ÈmËÓ°mÈ
AA AA E
−−
==
11

|¯ÈÓÈ« äÈ¯ÒÈ °˰mË ÓË ã« ¹¯ºÒÏmºãÓº® }mȯÈÓº® äÈ¯Ò© iã«
°˰mºmÈÓÒ«º¯ÈÓº®äÈ¯Ò©Ó˺²ºÒäºÒº°ÈºÓºº©m©¹ºãӫ㺰°ãº
mÒË
det
...
...
...
... ... ... ... ...
...
ααα α
ααα α
ααα α
ααα α
11 12 13 1
21 22 23 2
31 32 33 3
123
0
n
n
n
nn n nn

|¹¯ËËãËÓÒË

lÈ¯ÒÈ
A
ã« }ºº¯º®
det A = 0
ÓÈÏ©mÈ˰«kévlnttvp È
äÈ¯ÒÈã«}ºº¯º®
det A 0
tnkévlnttvp
ËääÈ

p°ãÒº¯ÈÓÈ«äÈ¯ÒÈ°˰mËººÓÈËÒÓ°mËÓÓÈ


¯ÈmÒãºÓȲºÎËÓÒ«º¹¯ËËãÒËã«}mȯÈÓº®äÈ¯Ò©¹º¯«
Q
¹¯ÒmºÒ°«m¯ÈÏËãË
cÈÏËã
¯Ëº­¯ÈϺmÈÓÒ«¹ãº°}º°ˆÒ



                       °¯ºÒÏmËËÓÒË                  äȈ¯Ò           º­ãÈÈˈ           °mº®°ˆmºä           jxxv|qjzqktvxzq
                                A ( B           C )=( A            B ) C 
                       
                       °¯ºÒÏmËËÓÒË                 äȈ¯Ò            º­ãÈÈˈ       °mº®°ˆmºä            lqxzéqiyzqktvxzq
                                A ( B + C )= A                      B + A           C 
             
             
        |ˆäˈÒä˝Ë¯Èψº¹¯ºÒÏmËËÓÒËm‚²äȈ¯Ò°‚Ë°ˆm‚ˈˆºã }ºˆºÈ}ºÈ
Ұ㺰ˆºã­ºm¹Ë¯mºº°ºäÓºÎ҈Ë㫯ÈmÓºÒ°ã‚°ˆ¯º}mˆº¯ºº
        
              Ë}º‚­Ë҈ °«ˆº‚äÓºÎËÓÒË }È}°¹¯ÈmȈÈ}Ò°ãËmÈ ã ­º®äȈ¯Ò© A 
ÓÈ ¹º²º«Ëº ¯ÈÏä˯È ËÒÓÒӂ  äȈ¯Ò‚ E  °ä ¹  Èˈ m ¯Ëς㠈ȈË ˆ‚ ÎË
°Èä‚ äȈ¯Ò‚ A 
       
       
       
                                                −1
    |¹¯ËËãËÓÒË        lȈ¯ÒÈ           A         ÓÈÏ©mÈˈ°« viéjztvp }mȯȈӺ® äȈ¯ÒË                                 A  ˰ãÒ
                                                                 −1                        −1
                         ÒäË ˆä˰ˆº¯ÈmËÓ°ˆmÈ A                             A = A          A         = E 
                         
         
         
       |­¯ÈˆÓÈ« äȈ¯ÒÈ °‚Ë°ˆm‚ˈ ÓË ã« ¹¯ºÒÏmºã Óº® }mȯȈӺ® äȈ¯Ò© iã«
°‚Ë°ˆmºmÈÓÒ«º­¯ÈˆÓº®äȈ¯Ò©Ó˺­²ºÒäºÒº°ˆÈˆºÓºˆº­©m©¹ºãӫ㺰 ‚°ãº
mÒË
       
       
                                                 α11        α12      α13       ... α1n
                                                 α 21       α 22     α 23      ... α 2 n
                                             det α 31       α 32     α 33      ... α 3n ≠ 0  
                                                  ...        ...      ...      ... ...
                                                 α n1       α n2     α n3      ... α nn
                 
                 
                 
    |¹¯ËËãËÓÒË        lȈ¯ÒÈ A   ã« }ºˆº¯º® det A = 0   ÓÈÏ©mÈˈ°« k€év lnttvp È
    
                         äȈ¯ÒÈã«}ºˆº¯º® det A ≠ 0 tnk€év lnttvp
                 
                 
                 
    ËääÈ               p°ãÒº­¯ÈˆÓÈ«äȈ¯ÒȰ‚Ë°ˆm‚ˈˆººÓÈËÒÓ°ˆmËÓÓÈ
    
           
           

   ¯ÈmÒãºÓȲºÎËÓÒ«º¹¯ËËã҈Ëã«}mȯȈӺ®äȈ¯Ò©¹º¯«}ÈQ¹¯Òmº҈°«m¯ÈÏËãË