Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 108 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
¯Òä˯

° p°ãÒ}ÈκämË}º¯
x
m¹¯º°¯ÈÓ°mË¹º°ÈmãËÓm°ººmË°mÒË
mË}º¯
y
 «mã«Ò®°« º¯ººÓÈãÓº® ¹¯ºË}ÒË® mË}º¯È
x
ÓÈ
ÓË}ºº¯º°
l
 º ºmº¯« º m ¹¯º°¯ÈÓ°mËÏÈÈÓº¹Ë¯Èº¯
yx
l
→→
=
Pr
º¯ººÓÈãÓºº ¹¯ºË}Ò¯ºmÈÓÒ« mË}º¯ºm ÓÈ º°
l
 {
ªºä°ãÈË°ÒämºãÒ˰}ÒäºÎÓºÏȹҰÈº
l
A rP
ˆ
ˆ
=

°
 zÈκ®ÒÁÁ˯ËÓÒ¯Ë亮ÓÈ
[,]
αβ
ÁÓ}ÒÒ
f ()
τ
äºÎÓº¹º
°ÈmÒmºÓºÏÓÈÓºË °ººmË°mÒË
f ()
τ
 ËË ¹¯ºÒÏmºÓ
ÁÓ}Ò ¹ºªºä äºÎÓº ºmº¯Ò º º¹Ë¯Èº¯Ë
ÒÁÁ˯ËÓÒ¯ºmÈÓÒ«
=f
d
d
f() ()
τ
τ
τ
°ÒämºãÒ˰}ÒººÏÓÈÈËäºä
}È}
τ
d
d
A =
ˆ

°
 zÈκä mË}º¯
x
m ¹¯º°¯ÈÓ°mË äºÎÓº ¹º°ÈmÒmºÓº
ÏÓÈÓºË°ººmË°mÒËÒ°ãº
x
˺ãÒÓ|ËmÒÓººÈÓ
ÓÈ«ÏÈmÒ°Ò亰«mã«Ë°«ÁÓ}ÒºÓÈãºäÏÈÈÓÓ©äÓÈäÓºÎ˰mË
mË}º¯ºm
°
 iã« }Èκ® Ó˹¯Ë¯©mÓº® ÓÈ
[,]
αβ
ÁÓ}ÒÒ
f ()
τ
°˰mË
ºÓºÏÓÈÓº m©Ò°ã«Ëä©® º¹¯ËËãËÓÓ©® ÒÓ˯Èã
fd
()
ττ
α
β
 }º
º¯©® äºÎÓº ¯È°°äÈ¯ÒmÈ}È}ÁÓ}ÒºÓÈã
=
β
α
ττ
dff
)()(
ÓÈ
äÓºÎ˰mËÁÓ}Ò®Ó˹¯Ë¯©mÓ©²ÓÈ
[,]
αβ

|¹¯ËËãËÓÒË

Ìwnéjzvévu
A
ˆ
 vzviéjjíqu wsvxrvxz ÒãÒ ¹¯º°º vzviéjntqnu
wsvxrvxzq
P
tjwsvxrvxz
Q
ÓÈÏ©mÈË°«¹¯ÈmÒãº¹º}ºº¯ºä}Èκ®
º}Ë ¹ãº°}º°Ò
P
¹º°ÈmãËÓÈ m °ººmË°mÒË ËÒÓ°mËÓÓÈ« º}È
¹ãº°}º°Ò
Q

|º¯ÈÎËÓÒËººÏÓÈÈË°«°ãËÒäº¯ÈϺä
A
ˆ
:P
Q
p°ãÒº}È
M
¹ãº°
}º°Ò
P
ºº¯ÈÎÈË°«mº}
M
¹ãº°}º°Ò
Q
ºªºººÏÓÈÈË°«}È}
MAM
ˆ
=
¹¯Ò
ªºäº}È
M
«mã«Ë°«viéjovuº}Ò
M
Èº}È
M
wévviéjovuº
M

 Ë }  Ò Ò  } È Á Ë  ¯ ©  m © °  Ë ®  ä È ˆ Ë ä È ˆ Ò } Ò  l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                  →
 ¯Òä˯               ° p°ãÒ}Èκä‚mË}ˆº¯‚ x m¹¯º°ˆ¯ÈÓ°ˆm˹º°ˆÈmãËÓm°ººˆmˈ°ˆmÒË
                                             →                                                                                →
 
                               mË}ˆº¯ y  «mã« Ò®°« º¯ˆººÓÈã Óº® ¹¯ºË}ÒË® mË}ˆº¯È x  ÓÈ
                               ÓË}ºˆº¯‚  º°  l  ˆº ºmº¯«ˆ ˆº m ¹¯º°ˆ¯ÈÓ°ˆmË ÏÈÈÓ º¹Ë¯Èˆº¯
                                →        →
                                     x   º¯ˆººÓÈã Óºº ¹¯ºË}ˆÒ¯ºmÈÓÒ« mË}ˆº¯ºm ÓÈ º°  l {
                                y = Prl

                               ªˆºä°ã‚È˰ÒämºãÒ˰}ÒäºÎÓºÏȹҰȈ ˆº Aˆ = P̂r                           l
                       
                       
                      ° zÈκ®ÒÁÁ˯ËÓÒ¯‚Ë亮ÓÈ [α , β ] Á‚Ó}ÒÒ f (τ ) äºÎÓº¹º
                             °ˆÈm҈  m ºÓºÏÓÈÓºË °ººˆmˈ°ˆmÒË f ′(τ )   ËË ¹¯ºÒÏmºӂ 
                             Á‚Ó}Ò      ¹ºªˆºä‚    äºÎÓº    ºmº¯Òˆ        º­    º¹Ë¯Èˆº¯Ë
                                                                            d
                               ÒÁÁ˯ËÓÒ¯ºmÈÓÒ« f ′(τ ) =                    f (τ ) °ÒämºãÒ˰}Òº­ºÏÓÈÈËäºä
                                                                            dτ
                                            d
                             }È} Aˆ =          →
                       ° zÈÎºä‚  dτmË}ˆº¯‚ x  m ¹¯º°ˆ¯ÈÓ°ˆmË äºÎÓº ¹º°ˆÈm҈  m ºÓº
                                                                            →
                               ÏÓÈӺ˰ººˆmˈ°ˆmÒËҰ㺠x ˺ãÒӂ|ËmÒÓºˆºÈÓ
                               ÓÈ«ÏÈmÒ°Ò亰ˆ «mã«Ëˆ°«Á‚Ó}ÒºÓÈãºäÏÈÈÓÓ©äÓÈäÓºÎ˰ˆmË
                               mË}ˆº¯ºm
                       
                       
                       ° iã« }Èκ® Ó˹¯Ë¯©mÓº® ÓÈ [α , β ]  Á‚Ó}ÒÒ f (τ )  °‚Ë°ˆm‚ˈ
                                                                                                              β
                               ºÓºÏÓÈÓº m©Ò°ã«Ëä©® º¹¯ËËãËÓÓ©® Òӈ˯Èã                               ∫ f (τ )dτ  }º
                                                                                                              α
                                                                                                                      β
                               ˆº¯©® äºÎÓº ¯È°°äȈ¯ÒmȈ  }È} Á‚Ó}ÒºÓÈã  ( f ) =                                ∫ f (τ )dτ  ÓÈ
                                                                                                                      α
                               äÓºÎ˰ˆmËÁ‚Ó}Ò®Ó˹¯Ë¯©mÓ©²ÓÈ [α , β ] 
           
           
           
 |¹¯ËËãËÓÒË          Ìwnéjzvévu   vzviéj jíqu wsvxrvxz ÒãÒ ¹¯º°ˆº vzviéj ntqnu
                wsvxrvxzq Ptjwsvxrvxz QÓÈÏ©mÈˈ°«¹¯ÈmÒ㺹º}ºˆº¯ºä‚}Èκ®
                       ˆº}Ë ¹ãº°}º°ˆÒ P ¹º°ˆÈmãËÓÈ m °ººˆmˈ°ˆmÒË ËÒÓ°ˆmËÓÓÈ« ˆº}È
                       ¹ãº°}º°ˆÒ Q
           
           
           |ˆº­¯ÈÎËÓÒ˺­ºÏÓÈÈˈ°«°ãË‚ Ò亭¯ÈϺä  :P → Qp°ãÒˆº}È M ¹ãº°
}º°ˆÒPºˆº­¯ÈÎÈˈ°«mˆº}‚ M ′ ¹ãº°}º°ˆÒ Qˆºªˆºº­ºÏÓÈÈˈ°«}È} M ′ = Aˆ M ¹¯Ò
ªˆºäˆº}È M ′ «mã«Ëˆ°«viéjovuˆº}ÒMȈº}ÈMwévviéjovuˆº}Ò M ′