Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 114 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
kÁÁÒÓÓ©Ë¹¯Ëº¯ÈϺmÈÓÒ«ÒÒ²°mº®°mÈ
ÒÓˮөËº¹Ë¯Èº¯©ºº¯ÈÎÈÒË¹ãº°}º°°ÈäÓÈ°Ë«º˰ãÒÓˮөË
º¹Ë¯Èº¯©mÒÈ
:AP P
ã«}ºº¯©²°˰mËº¯ÈÓ©®Ò¯ÈmÈÎÓ°¹¯È}
Ò˰}º®º}ÒϯËÓÒ«¯ºãÒ¹ººäm©Ëã«°«m°¹ËÒÈãÓ©®}ãȰ°
|¹¯ËËãËÓÒË

ÒÓˮө® º¹Ë¯Èº¯
x
y
A
x
y
g
=+
β
β
1
2
 ºº¯ÈÎÈÒ®¹ãº°}º°
P
°Èä ÓÈ °Ë« ° äÈ¯ÒË®
A
g
=
αα
αα
11 12
21 22
 ã« }ºº¯º® m ãºä
ÈÏÒ°Ë
det
αα
αα
11 12
21 22
0
ÓÈÏ©mÈË°«j{{qttuwénviéjovkjtqnuwsvx
rvxzq
˺¯ËäÈ

p°ãÒãÒÓˮӺË¹¯Ëº¯ÈϺmÈÓÒËÒäËËÓËm©¯ºÎËÓÓäÈ¯ÒmÓË
}ºº¯º®Ë}ȯºmº®°Ò°ËäË}ºº¯ÒÓÈºäÈ¯ÒÈªºº¹¯Ëº¯ÈϺ
mÈÓÒ« Ë ÓËm©¯ºÎËÓÓº® Ò m ãº® ¯º® Ë}ȯºmº® °Ò°ËäË
}ºº¯ÒÓÈ
iº}ÈÏÈËã°mº
°
det
A
g
0
mÓË}ºº¯º®°Ò°ËäË}ºº¯ÒÓÈ¹Ë¯Ë®Ëä}Óºmº®°Ò°ËäË
}ºº¯ÒÓÈºÈ m°Òã˺¯Ëä©ÒÓËm©¯ºÎËÓÓº°Ò äÈ¯Ò©¹Ë¯Ë²ºÈ
S
ÒäËËä
det
det (
) det det
det
det
det
det det
.
ASASSAS
S
ASA
gg g
gg
−−
===
=⋅ =
11
1
0
˺¯ËäÈº}ÈÏÈÓÈ

~ÈäËÈÓÒ«
 È}Òä º¯ÈϺä ¹º}ÈÏÈÓº º ã« ÈÁÁÒÓÓº°Ò ãÒÓˮӺº ¹¯Ëº¯ÈϺmÈÓÒ«
º°ÈºÓºº©
det
A
g
0
²º«©mºÓºäÈÏÒ°Ë
¯È°°ÎÈ«ÈÓÈãºÒÓºº}ÈÏÈËã°m˺¯Ëä©äºÎÓºÏÈ}ãÒº
ÏÓÈËÓÒËº¹¯ËËãÒËã«äÈ¯Ò©ãººãÒÓˮӺºº¹Ë¯Èº¯ÈË®°m
˺ÓÈ¹ãº°}º°Ò«mã«Ë°«qtkjéqjtzvuº˰mËãÒÒÓº®ÓËÏÈmÒ°«
Ë®ºm©º¯ÈÈÏÒ°È
˺¯ËäÈ

zÈκËÈÁÁÒÓÓºË¹¯Ëº¯ÈϺmÈÓÒËÒäËËËÒÓ°mËÓÓºËº¯ÈÓºË
 Ë }  Ò Ò  } È Á Ë  ¯ ©  m © °  Ë ®  ä È ˆ Ë ä È ˆ Ò } Ò  l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



kÁÁÒÓө˹¯Ëº­¯ÈϺmÈÓÒ«ÒÒ²°mº®°ˆmÈ
                
                
                
                ÒÓˮө˺¹Ë¯Èˆº¯©ºˆº­¯ÈÎÈ Ò˹㺰}º°ˆ °Èä‚ÓȰ˭« ˆº˰ˆ ãÒÓˮөË
º¹Ë¯Èˆº¯©mÒÈ A : P → P ã«}ºˆº¯©²°‚Ë°ˆm‚ˈº­¯ÈˆÓ©®Ò¯È ˆmÈÎӂ °¹¯È}
ˆÒ˰}º®ˆº}ÒϯËÓÒ«¯ºã Ò¹ºˆºä‚m©Ëã« ˆ°«m°¹ËÒÈã Ó©®}ãȰ°
       
                                                          x∗                       x   β1
    |¹¯ËËãËÓÒË          ÒÓˮө® º¹Ë¯Èˆº¯                  = A                   +     ºˆº­¯ÈÎÈ Ò® ¹ãº°}º°ˆ 
                                                    y ∗              g       y   β2
                                                                                        α11 α12
                          P °Èä‚ ÓÈ °Ë­« ° äȈ¯ÒË®                 A       =              ã« }ºˆº¯º® m ã ­ºä
                                                                                g       α 21 α 22
                                           α11 α12
                          ­ÈÏÒ°Ë det                ≠ 0 ÓÈÏ©mÈˈ°«j{{qtt€uwénviéjovkjtqnuwsvx
                                           α 21 α 22
                          rvxzq
                
                
    ‘˺¯ËäÈ              p°ãÒãÒÓˮӺ˹¯Ëº­¯ÈϺmÈÓÒËÒäËˈÓËm©¯ºÎËÓӂ äȈ¯Ò‚mÓË
                   }ºˆº¯º®Ë}ȯˆºmº®°Ò°ˆËäË}ºº¯ÒÓȈˆºäȈ¯ÒȪˆºº¹¯Ëº­¯ÈϺ
                          mÈÓÒ« ­‚ˈ ÓËm©¯ºÎËÓÓº® Ò m ã ­º® ¯‚º® Ë}ȯˆºmº® °Ò°ˆËäË
                          }ºº¯ÒÓȈ
           
     iº}ÈÏȈËã°ˆmº
        


            ‚°ˆ  det A            ≠ 0 mÓË}ºˆº¯º®°Ò°ˆËäË}ºº¯ÒÓȈ¹Ë¯Ë®Ëä}Óºmº®°Ò°ˆËäË
                                 g
            }ºº¯ÒÓȈ ˆºÈ m °Òã‚ ˆËº¯Ëä©  Ò ÓËm©¯ºÎËÓÓº°ˆÒ äȈ¯Ò© ¹Ë¯Ë²ºÈ
                    S ÒäËËä
            

                                                      −1                                   −1
                           det A         = det ( S        A            S ) = det S            ⋅ det A       ⋅ det S =
                                     g′                          g                                         g

                                                1                                                                          
                                          =           ⋅ det A           ⋅ det S = det A             ≠0 .
                                              det S                  g                            g
        

        ‘˺¯ËäȺ}ÈÏÈÓÈ
                
                

~ÈäËÈÓÒ«  ˆÈ}Òä º­¯ÈϺä ¹º}ÈÏÈÓº ˆº ã« ÈÁÁÒÓÓº°ˆÒ ãÒÓˮӺº ¹¯Ëº­¯ÈϺmÈÓÒ«

                        º°ˆÈˆºÓºˆº­© det A               ≠ 0 ²ºˆ«­©mºÓºä­ÈÏÒ°Ë
                                                           g


                    ¯È°°‚ÎÈ«ÈÓÈãºÒÓºº}ÈÏȈËã °ˆm‚ˆËº¯Ëä©äºÎÓºÏÈ}ã ҈ ˆº
                       ÏÓÈËÓÒ˺¹¯ËËã҈Ëã«äȈ¯Ò©ã ­ººãÒÓˮӺºº¹Ë¯Èˆº¯ÈË®°ˆm‚ 
                       ËºÓȹ㺰}º°ˆÒ«mã«Ëˆ°«qtkjéqjtzvuˆº˰ˆ mËãÒÒÓº®ÓËÏÈmÒ°«
                       Ë®ºˆm©­º¯È­ÈÏÒ°È
                
                
    ‘˺¯ËäÈ              zÈκËÈÁÁÒÓӺ˹¯Ëº­¯ÈϺmÈÓÒËÒäËˈËÒÓ°ˆmËÓӺ˺­¯ÈˆÓºË