Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 116 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
iº}ÈÏÈËã°mº
¯Ë¹ºãºÎÒäº¹È¯È¹È¯ÈããËãÓ©²¹¯«ä©²¹Ë¯ËmËËÓÈÈÁÁÒÓÓ©ä¹¯Ëº¯È
ϺmÈÓÒËäm¹Ë¯Ë°Ë}ÈÒ˰«ÒãÒ°ºm¹ÈÈÒË¹¯«ä©Ë
cȰ°äº¯Òä ºÓ ÒÏ ºË} ºÒ² ã« º¯ÈϺm ¹¯«ä©² º°}ºã} ÈÁÁÒÓÓºË
¹¯Ëº¯ÈϺmÈÓÒËmÏÈÒäÓººÓºÏÓÈÓºº¹¯ºº¯ÈÏºË®º}ÒËÒÓ°mËÓÓ©®Ò
ºãÎËÓ¹¯ÒÓÈãËÎÈºÓºm¯ËäËÓÓº}Èκ®ÒÏ¹¯«ä©²¹¯ºº¯ÈϺm
|ÓÈ}º È}Ò² ºË} ÓË Òº ¹¯«ä©Ë¹¯ºº¯ÈÏ© ¹È¯ÈããËãÓ© vã˺mÈËãÓº
º¯ÈÏ©¹È¯ÈããËãÓ©²¹¯«ä©²È}ÎË¹È¯ÈããËãÓ©
p°ãÒ ÎË ¹¯«ä©Ë¹¯ºº¯ÈÏ© ¹Ë¯Ë°Ë}È°« º m °Òã mÏÈÒäÓº® ºÓºÏÓÈÓº°Ò
ÈÁÁÒÓÓºº ¹¯Ëº¯ÈϺmÈÓÒ« º¯ÈϺä Ò² º}Ò ¹Ë¯Ë°ËËÓÒ« äºÎË ©ºã}º
º}È¹Ë¯Ë°ËËÓÒ«º¯ÈϺmªÒ²¹¯«ä©²
˺¯ËäÈº}ÈÏÈÓÈ
˺¯ËäÈ

¯ÒÈÁÁÒÓÓºä¹¯Ëº¯ÈϺmÈÓÒÒ°º²¯ÈÓ«Ë°« ËãËÓÒËº¯ËÏ}Èm ÈÓ
ÓºäºÓºËÓÒÒ
iº}ÈÏÈËã°mº
° ÈÓº ¯Ò°  º
xx
xx
21
32
=
λ

Ò
yy
yy
21
32
=
λ
 Ë
λ
≠−
1
 ÓÎÓº ¹º}È
ÏÈº
xx
xx
21
32
∗∗
∗∗
=
λ
Ò
yy
yy
21
32
∗∗
∗∗
=
λ

M
3

M
1

M
2


M
2
M
1

M
3
èqxytvr
°ÈÁÁÒÓÓºË¹¯Ëº¯ÈϺmÈÓÒËÏÈÈÓºmmÒË
xxy
yxy
=++
=++
αα β
αα β
11 12 1
21 22 2
ºÈ
xx
xx
xx yy
xx yy
xx yy
xx yy
21
32
11 2 1 12 2 1
11 3 2 12 3 2
11 3 2 12 3 2
11 3 2 12 3 2
∗∗
∗∗
=
−+
−+
=
−+
−+
=
αα
αα
αλ αλ
αα
λ
()()
()()
()()
()()

 Ë }  Ò Ò  } È Á Ë  ¯ ©  m © °  Ë ®  ä È ˆ Ë ä È ˆ Ò } Ò  l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



   iº}ÈÏȈËã°ˆmº
       
         ¯Ë¹ºãºÎÒ䈺¹È¯È¹È¯ÈããËã Ó©²¹¯«ä©²¹Ë¯ËmËËÓÈÈÁÁÒÓө乯˺­¯È
         ϺmÈÓÒËäm¹Ë¯Ë°Ë}È Ò˰«ÒãÒ°ºm¹ÈÈ Ò˹¯«ä©Ë
         
         cȰ°äºˆ¯Òä ºӂ ÒÏ ˆºË} º­Ò² ã« º­¯ÈϺm ¹¯«ä©² º°}ºã }‚ ÈÁÁÒÓÓºË
         ¹¯Ëº­¯ÈϺmÈÓÒËmÏÈÒäÓººÓºÏÓÈÓºˆº¹¯ºº­¯ÈϺ­Ë®ˆº}ÒËÒÓ°ˆmËÓÓ©®Ò
         ºãÎËÓ¹¯ÒÓÈãËÎȈ ºÓºm¯ËäËÓÓº}Èκ®ÒϹ¯«ä©²¹¯ºº­¯ÈϺm
         
         |ÓÈ}º ˆÈ}Ò² ˆºË} Óˈ Ò­º ¹¯«ä©Ë¹¯ºº­¯ÈÏ© ¹È¯ÈããËã Ó© vã˺mȈËã Óº
         º­¯ÈÏ©¹È¯ÈããËã Ó©²¹¯«ä©²ˆÈ}Î˹ȯÈããËã Ó©
         
         p°ãÒ ÎË ¹¯«ä©Ë¹¯ºº­¯ÈÏ© ¹Ë¯Ë°Ë}È ˆ°« ˆº m °Òã‚ mÏÈÒäÓº® ºÓºÏÓÈÓº°ˆÒ
         ÈÁÁÒÓÓºº ¹¯Ëº­¯ÈϺmÈÓÒ« º­¯ÈϺä Ò² ˆº}Ò ¹Ë¯Ë°ËËÓÒ« äºÎˈ ­©ˆ  ˆºã }º
         ˆº}ȹ˯˰ËËÓÒ«º­¯ÈϺmªˆÒ²¹¯«ä©²
     
     ‘˺¯ËäȺ}ÈÏÈÓÈ
           
           
           
  ‘˺¯ËäÈ          ¯ÒÈÁÁÒÓӺ乯˺­¯ÈϺmÈÓÒÒ°º²¯Èӫˈ°« ËãËÓÒ˺ˆ¯ËÏ}Èm ÈÓ
             Ӻ予ӺËÓÒÒ
           
           
     iº}ÈÏȈËã°ˆmº                                                 
     
                                                                      
     
                                                             
                                             x 2 − x1
         ‚°ˆ  ÈÓº ¯Ò°   ˆº            = λ  M3 M 1∗ 
                                             x3 − x2
                                                             
            y 2 − y1                                                                                     ∗
         Ò          = λ  Ë λ ≠ −1  ӂÎÓº ¹º}È  M 2 
            y3 − y2
                                                              M2
         ÏȈ ˆº
         
                                                                                         M1 M 3∗ 
                            x 2∗ − x1∗                     y2∗   −   y1∗
                                                 = λ Ò                    = λ                  
                            x 3∗   −      x 2∗             y3∗   −   y 2∗                          
                                                                                                  
                                                                                                  
                                                                                                   
                                                                                                           èqxytvr
  
   
                                                                                            x ∗ = α11 x + α12 y + β1
     ‚°ˆ ÈÁÁÒÓӺ˹¯Ëº­¯ÈϺmÈÓÒËÏÈÈÓºmmÒË                                            ∗
                                                                                                                               ˆºÈ
                                                                                            y = α 21 x + α 22 y + β2
                 
                 
                     x 2∗ − x1∗                  α11 ( x 2 − x1 ) + α12 ( y 2 − y1 ) α11 λ ( x 3 − x 2 ) + α12 λ ( y 3 − y 2 )
                                           =                                           =                                       = λ 
                     x 3∗    −     x 2∗          α11 ( x 3 − x 2 ) + α12 ( y 3 − y 2 )   α11 ( x 3 − x 2 ) + α12 ( y 3 − y 2 )