Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 118 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
sÈ}ºÓË¹º˺¯ËäË¹ºãÈËä
MM
MM
MM
MM
MM
MM
MM
MM
12
34
12
32
12
32
12
34
∗∗
∗∗
∗∗
∗∗
=
=
==
λ

˺¯ËäÈº}ÈÏÈÓÈ
iã« m©«°ÓËÓÒ« ˺äË¯Ò˰}ºº °ä©°ãÈ äºã« Ò ÏÓÈ}È º¹¯ËËãÒËã« äÈ¯Ò©
ÓË}ºº¯ºº ÈÁÁÒÓÓºº ¹¯Ëº¯ÈϺmÈÓÒ« ¹¯ÒmËËä ÒÓºË º¹¯ËËãËÓÒË véqntzj|qq wjé
tnrvssqtnjét}knrzvévkÓÈ¹ãº°}º°Ò°äº¹¯ËËãËÓÒË¹Ë¯ËÓ˰«¯È°°äº¯ËÓÒË
ªº®¹ãº°}º°Òm¹¯º°¯ÈÓ°mº°}¯ºäËºº
n
˰ËËÓË}ºº¯©®ÁÒ}°Ò¯ºmÈÓ
Ó©®Óº¯äÈãÓ©®mË}º¯Óȹ¯ÈmãËÓÓ©®m°º¯ºÓÓÈãÈËã«
|¹¯ËËãËÓÒË

ȯ ÓË}ºããÒÓËȯө² mË}º¯ºm
a
Ò
b
ÓÈϺmËä wéjkv véqntzqévkjt
tvp˰ãÒ°˰mË
λ
>
0
È}ºËº
[,]
ab n
→→
=
λ
Ò°ººmË°mËÓÓº
snkvvéqntzqévkjttvp˰ãÒ°˰mË
λ
<
0
È}ºËº
[,]
ab n
→→
=
λ

˺¯ËäÈ

°
 ¯ÒÈÁÁÒÓÓºä¹¯Ëº¯ÈϺmÈÓÒÒºÓºËÓÒË¹ãºÈÒº¯ÈÏÈ¹È
¯ÈããË㺯ÈääÈ}¹ãºÈÒ°È人¹È¯ÈããË㺠¯ÈääÈ¯ÈmÓºÈ°º
ãÓº®mËãÒÒÓË
det
αα
αα
11 12
21 22
°
 ¯ÒÈÁÁÒÓÓºä¹¯Ëº¯ÈϺmÈÓÒÒº¯ÒËÓÈÒ«º¯ÈϺm¹È¯©}
º¯ºm °ºm¹ÈÈË ° º¯ÒËÓÈÒË® ¹¯ºº¯ÈϺm ˰ãÒ
det
αα
αα
11 12
21 22
0
>
 Ò äËÓ«Ë°« ÓÈ ¹¯ºÒmº¹ºãºÎÓ ˰ãÒ
det
αα
αα
11 12
21 22
0
<
iº}ÈÏÈËã°mº
cȰ°äº¯ÒäÓË}ºº¯©®ÈÏÒ°º¯ÈϺmÈÓÓ©®mË}º¯ÈäÒ
g
1
Ò
g
2
º¯ÈÏ©}ºº
¯©² ¹¯Ò ÈÁÁÒÓÓºä ¹¯Ëº¯ÈϺmÈÓÒÒ
A
˰ °ººmË°mËÓÓº
gAg g g
11111212
→→
== +
αα
Ò
gAg g g
22121222
→→
== +
αα
¯Ò°  zºªÁÁÒÒËÓ©
 Ë }  Ò Ò  } È Á Ë  ¯ ©  m © °  Ë ®  ä È ˆ Ë ä È ˆ Ò } Ò  l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



         sÈ}ºÓ˹ºˆËº¯Ëä˹ºã‚ÈËä
         
                                         →                    →
                                                                             →              →
                                      M 1∗ M 2∗            M 1∗ M 2∗       M1 M 2         M1 M 2
                                         →
                                                  =        →
                                                                       =     →
                                                                                      =     →
                                                                                                       = λ 
                                      M 3∗ M 4∗        M 3′ ∗ M 2∗         M 3′ M 2       M3 M4

         
     ‘˺¯ËäȺ}ÈÏÈÓÈ
       
       
       
       iã« m©«°ÓËÓÒ« ˺äˈ¯Ò˰}ºº °ä©°ãÈ äº‚ã« Ò ÏÓÈ}È º¹¯ËËã҈Ëã« äȈ¯Ò©
ÓË}ºˆº¯ºº ÈÁÁÒÓÓºº ¹¯Ëº­¯ÈϺmÈÓÒ« ¹¯ÒmËËä ÒÓºË º¹¯ËËãËÓÒË véqntzj|qq wjé€
tnrvssqtnjét€}knrzvévkÓȹ㺰}º°ˆÒ °äº¹¯ËËãËÓÒË ¹Ë¯ËÓ˰«¯È°°äºˆ¯ËÓÒË
                                                                                 →
ªˆº®¹ãº°}º°ˆÒm¹¯º°ˆ¯ÈÓ°ˆmº‚°ˆ }¯ºäˈºº n ˰ˆ ËËÓË}ºˆº¯©®ÁÒ}°Ò¯ºmÈÓ
Ó©®Óº¯äÈã Ó©®mË}ˆº¯Óȹ¯ÈmãËÓÓ©®m°ˆº¯ºÓ‚ÓÈ­ã ȈËã«
       
       
                                                                            →        →
 |¹¯ËËãËÓÒË           È¯‚ ÓË}ºããÒÓËȯө² mË}ˆº¯ºm a  Ò b  ÓÈϺmËä wéjkv véqntzqévkjt
                                                                               → →          →
                        tvp˰ãÒ°‚Ë°ˆm‚ˈ λ > 0 ˆÈ}ºËˆº [ a , b ] = λ n Ò°ººˆmˈ°ˆmËÓÓº
                                                                                                                 → →        →
                        snkvvéqntzqévkjttvp˰ãÒ°‚Ë°ˆm‚ˈ λ < 0 ˆÈ}ºËˆº [ a , b ] = λ n 
             
             
             
 ‘˺¯ËäÈ               ° ¯ÒÈÁÁÒÓӺ乯˺­¯ÈϺmÈÓÒÒºˆÓºËÓÒ˹㺝ÈÒº­¯ÈÏȹÈ
                       ¯ÈããË㺯ÈääÈ}¹ãºÈÒ°È人¹È¯ÈããË㺯ÈääȯÈmӺȭ°º
                                                                       α11 α12
                               㠈Ӻ®mËãÒÒÓË det                              
                                                                       α 21 α 22
                        
                        
                        ° ¯ÒÈÁÁÒÓӺ乯˺­¯ÈϺmÈÓÒÒº¯ÒËӈÈÒ«º­¯ÈϺm¹È¯©mË}
                              ˆº¯ºm °ºm¹ÈÈˈ  °   º¯ÒËӈÈÒË®  ¹¯ºº­¯ÈϺm  ˰ãÒ
                                      α11 α12
                                det             > 0  Ò äËӫˈ°« ÓÈ ¹¯ºˆÒmº¹ºãºÎӂ  ˰ãÒ
                                      α 21 α 22
                                      α11 α12
                                det             < 0 
                                      α 21 α 22
             
             
  iº}ÈÏȈËã°ˆmº
                                                                                                   →       →
         cȰ°äºˆ¯ÒäÓË}ºˆº¯©®­ÈÏÒ°º­¯ÈϺmÈÓÓ©®mË}ˆº¯ÈäÒ g1 Ò g 2 º­¯ÈÏ©}ºˆº
         ¯©²        ¹¯Ò          ÈÁÁÒÓ                ¹¯Ëº­¯ÈϺmÈÓÒÒ               A      ˰ˆ         °ººˆmˈ°ˆmËÓÓº
             →      →          →         →            →           →         →         →
          g = A g1 = α11 g1 + α 21 g 2  Ò g = A g2 = α12 g1 + α22 g 2  ¯Ò°   zºªÁÁÒÒËӈ©
              ∗
              1
                                                       ∗
                                                       2