Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 21 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
25
{Ë}º¯©ÒãÒÓˮөËº¹Ë¯ÈÒÒ°ÓÒäÒ
j°¹ºãÏ« ÈÓÓ °ÒämºãÒ} ãÒÓË®Ó}ºäÒÓÈÒ
+++
nn
aaa
λλλ
...
2211
äºÎÓºÏȹҰÈmmÒË
=
k
n
k
k
a
1
λ

¯ÒmËËä˹˯º¹¯ËËãËÓÒËmÈÎÓºº¹ºÓ«Ò«sqtnptvpojkqxquvxzq°Ò°Ëä©
mË}º¯ºm
|¹¯ËËãËÓÒË

{Ë}º¯©
n
aaa
,...,,
21
ÓÈÏ©mÈ°«sqtnptvojkqxquuq Ë°ãÒ °Ë°mË
Ò²ÓË¯ÒmÒÈãÓÈ«ãÒÓË®ÓÈ«}ºäÒÓÈÒ«
=
k
n
k
k
a
1
λ
È}È«º
=
=
oa
k
n
k
k
1
λ

|¹¯ËËãËÓÒË

{Ë}º¯©
n
aaa
,...,,
21
ÓÈÏ©mÈ°«sqtnptvtnojkqxquuqË°ãÒÒÏ°ãº
mÒ«
=
=
oa
k
n
k
k
1
λ
°ãËË¯ÒmÒÈãÓº°ãÒÓˮӺ®}ºäÒÓÈÒÒ
=
k
n
k
k
a
1
λ

ºË°º
0...
21
====
n
λλλ

jÓÈËºmº¯«mË}º¯©
n
aaa
,...,,
21
ãÒÓˮӺÓËÏÈmÒ°Òä©Ë°ãÒã«ãººÓÈº¯È
Ò°Ëã
λλ λ
12
, ,...,
n
 ÓË ¯ÈmÓ©² ÓãºÓºm¯ËäËÓÓº ãÒÓË®ÓÈ« }ºäÒÓÈÒ«
=
k
n
k
k
a
1
λ
ÓË
¯ÈmÓÈ
o

v¹¯ÈmËãÒm©°ãËÒËm˯ÎËÓÒ«
˺¯ËäÈ

|ÒÓ mË}º¯ ãÒÓˮӺ ÏÈmÒ°Òä ºÈÒ ºã}º ºÈ È ºÓÓãË
mº®
˺¯ËäÈ

imÈmË}º¯ÈãÒÓˮӺÏÈmÒ°Òä©º ÈÒºã}ººÈÈºÓÒã
ãÒÓËȯө
˺¯ËäÈ

¯ÒmË}º¯ÈãÒÓˮӺÏÈmÒ°Òä©ºÈÒºã}ººÈÈºÓÒ}ºä
¹ãÈÓȯө
˺¯Ëä©Ò¹¯ËãÈÈ°«ã«°È亰º«ËãÓººº}ÈÏÈËã°mÈ~Ë°
ÎËä©¯È°°äº¯Òä¹º¯ºÓº˺¯Ëäº}ÈÏÈm¹¯ËmȯÒËãÓº°ãËËËm°¹º
äºÈËãÓºËm˯ÎËÓÒË
c È Ï  Ë ã                                                      25
{Ë}ˆº¯©ÒãÒÓˮө˺¹Ë¯ÈÒÒ°ÓÒäÒ



                                                                                                                                                                   →              →                      →
                  j°¹ºã ς« ÈÓӂ  °ÒämºãÒ}‚ ãÒÓˮӂ  }ºä­ÒÓÈÒ  λ1 a1 + λ 2 a2 + ... + λn an 
                                                         n          →
äºÎÓºÏȹҰȈ mmÒË                                  ∑ λk ak 
                                                       k =1
       
       
       ¯ÒmËËäˆË¹Ë¯ º¹¯ËËãËÓÒËmÈÎÓºº¹ºÓ«ˆÒ«sqtnptvpojkqxquvxzq°Ò°ˆËä©
mË}ˆº¯ºm
       
                                                         → →                →
    |¹¯ËËãËÓÒË                   {Ë}ˆº¯© a1 , a2 ,..., an  ÓÈÏ©mÈ ˆ°« sqtnptv ojkqxqu€uq Ë°ãÒ °‚Ë°ˆm‚ˈ
    
                                                                                                                                      n          →
                                   Ò²Óˈ¯ÒmÒÈã ÓÈ«ãÒÓË®ÓÈ«}ºä­ÒÓÈÒ«                                                            ∑ λk ak ˆÈ}È«ˆº
                                                                                                                                 k =1
                                                                                                            n          →        →
                                                                                                          ∑ λk ak = o 
                                                                                                          k =1
                  
                                                         → →                →
    |¹¯ËËãËÓÒË                   {Ë}ˆº¯© a1 , a2 ,..., an ÓÈÏ©mÈ ˆ°«sqtnptvtnojkqxqu€uqË°ãÒÒÏ‚°ãº
    
                                                n          →         →                                                                                                                    n          →
                                   mÒ«       ∑ λk ak = o °ãË‚ˈˆ¯ÒmÒÈã Óº°ˆ ãÒÓˮӺ®}ºä­ÒÓÈÒÒ ∑ λk ak 
                                              k =1                                                                                                                                       k =1
                                   ˆºË°ˆ ˆº λ1 = λ2 = ... = λn = 0 
                  
                  
                                                                          → →               →
                  jÓÈ˺mº¯«mË}ˆº¯© a1 , a2 ,..., an ãÒÓˮӺÓËÏÈmÒ°Òä©Ë°ãÒã«ã ­ººÓÈ­º¯È
                                                                                                                                                                                     n           →
Ò°Ëã λ1 , λ2 ,..., λn  ÓË ¯ÈmÓ©² ӂã  ºÓºm¯ËäËÓÓº ãÒÓË®ÓÈ« }ºä­ÒÓÈÒ«                                                                                                  ∑ λk ak  ÓË
                                                                                                                                                                                   k =1
               →
¯ÈmÓÈ o 
         
         v¹¯ÈmËãÒm©°ãË‚ ÒË‚ˆm˯ÎËÓÒ«
         
 ‘˺¯ËäÈ      |ÒÓ mË}ˆº¯ ãÒÓˮӺ ÏÈmÒ°Òä ˆºÈ Ò ˆºã }º ˆºÈ }ºÈ ºÓ ӂãË
        mº®
               
 ‘˺¯ËäÈ      imÈmË}ˆº¯ÈãÒÓˮӺÏÈmÒ°Ò䩈ºÈÒˆºã }ºˆºÈ}ºÈºÓÒ}ºã
        ãÒÓËȯө
               
 ‘˺¯ËäÈ      ‘¯ÒmË}ˆº¯ÈãÒÓˮӺÏÈmÒ°Ò䩈ºÈÒˆºã }ºˆºÈ}ºÈºÓÒ}ºä
        ¹ãÈÓȯө
         
         
         ‘˺¯Ëä©Ò¹¯ËãÈÈ ˆ°«ã«°È亰ˆº«ˆËã Óººº}ÈÏȈËã °ˆmÈ~Ë° 
ÎË䩯Ȱ°äºˆ¯Ò乺¯º­ÓºˆËº¯Ë䂺}ÈÏÈm¹¯Ëmȯ҈Ëã Óº°ãË‚ ËËm°¹º
äºȈËã Ӻ˂ˆm˯ÎËÓÒË