Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 22 стр.

UptoLike

Составители: 

Рубрика: 

26
Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
ËääÈ

iã«ãÒÓˮӺ®ÏÈmÒ°Ò亰ÒmË}º¯ºm
n
aaa
,...,,
21
Ó˺²ºÒäºÒº°
ÈºÓºº©ºÒÓÒÏÓÒ²©ããÒÓˮӺ®}ºäÒÓÈÒË®º°ÈãÓ©²

iº}ÈÏÈËã°mº
iº}ÈÎËä Ó˺²ºÒ亰 ° mË}º¯©
n
aaa
,...,,
21
ãÒÓˮӺ ÏÈmÒ°Òä© ºÈ
°Ë°m Ò°ãÈ
n
λλλ
,...,,
21
 ºÓºm¯ËäËÓÓº ÓË ¯ÈmÓ©Ë Óã È}ÒË º
λ
k
k
n
k
ao
=
→→
=
1
iã«º¹¯ËËãËÓÓº°ÒäºÎÓº°ÒÈº
0
1
λ
ÓººÈ
=
=
k
n
k
k
aa
)(
2
1
1
λ
λ

ºÒº}ÈÏ©mÈËÓ˺²ºÒ亰
iº}ÈÎËä º°ÈºÓº° ° ã« º¹¯ËËãËÓÓº°Ò
=
=
n
k
kk
aa
2
1
λ
 ºÈ
=
=+
oaa
n
k
kk
2
1
)1(
λ
¹¯ÒËä
0||...|||1|
2
>+++
n
λλ
ºË°ÓË¯ÒmÒÈãÓÈ«ãÒÓË®
ÓÈ«}ºäÒÓÈÒ«mË}º¯ºm
aa a
n
12
→→
,,...,
¯ÈmÓÈÓãËmºämË}º¯
ËääÈº}ÈÏÈÓÈ
iº}ÈÎËä˹˯˺¯Ëä
iº}ÈÏÈËã°mº
iº}ÈÎËäÓ˺²ºÒ亰
°¯ÒmË}º¯È
321
,,
aaa
ãÒÓˮӺÏÈmÒ°Òä©ºË°°Ë°m¯ÒºÓº
m¯ËäËÓÓº ÓË ¯ÈmÓ©² Óã Ò°ãÈ
321
,,
λλλ
 È}Ò² º
=++ oaaa
332211
λλλ

ºÈ ¹º ãËääË  ºÒÓ ÒÏ mË}º¯ºmË°ãÒÓË®ÓÈ«}ºäÒÓÈÒ« m² º°
ÈãÓ©²ÒÏÓÈÒÈÓÓ©Ë¯ÒmË}º¯È}ºä¹ãÈÓȯө
iº}ÈÎËäº°ÈºÓº°m¹¯Ë¹ºãºÎËÓÒÒºmË}º¯©
a
1
Ò
a
2
ÓË}ºããÒÓËȯ
Ó©° ÈÓ© ¯Ò }ºä¹ãÈÓȯө²mË}º¯È
aaa
123
→→
,,
˯ËÓË°Ëä ªÒ mË}º¯©
È}Òäº¯ÈϺäº©Ò²ÓÈÈãÈ¹º¹ÈãÒmºÓº}
26 Ë }  Ò Ò   } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                         → →          →
 ËääÈ                  iã«ãÒÓˮӺ®ÏÈmÒ°Ò亰ˆÒmË}ˆº¯ºm a1 , a2 ,..., an Ó˺­²ºÒäºÒº°
 
                         ˆÈˆºÓºˆº­©ºÒÓÒÏÓÒ²­©ããÒÓˮӺ®}ºä­ÒÓÈÒË®º°ˆÈã Ó©²
       
  iº}ÈÏȈËã°ˆmº
                                                                                   → →            →
          iº}ÈÎËä Ó˺­²ºÒ亰ˆ  ‚°ˆ  mË}ˆº¯© a1 , a2 ,..., an  ãÒÓˮӺ ÏÈmÒ°Òä© ˆºÈ
          °‚Ë°ˆm‚ ˆ Ò°ãÈ λ1 , λ2 ,..., λn  ºÓºm¯ËäËÓÓº ÓË ¯ÈmÓ©Ë ӂã  ˆÈ}ÒË ˆº
            n       →        →
           ∑ λk a k = o i㫺¹¯ËËãËÓÓº°ˆÒäºÎÓº°҈Ȉ ˆº λ1 ≠ 0 ÓºˆºÈ
           k =1
                                                                →        n
                                                                                 λk →
                                                               a1 =    ∑ (−      λ1
                                                                                    ) ak 
                                                                      k =2
                                                                             
          ˆºÒº}ÈÏ©mÈˈÓ˺­²ºÒ亰ˆ 
  
                                                                                                              →         n         →
          iº}ÈÎËä º°ˆÈˆºÓº°ˆ  ‚°ˆ  ã« º¹¯ËËãËÓÓº°ˆÒ a1 =                                                  ∑ λk ak  ˆºÈ
                                                                                                                       k =2
                  →      n       →      →
           (−1) a1 +    ∑ λk ak = o ¹¯ÒËä | − 1 |+| λ2 |+...+| λn | > 0 ‘ºË°ˆ                    Óˈ¯ÒmÒÈã ÓÈ«ãÒÓË®
                        k =2
                                                      →    →         →
          ÓÈ«}ºä­ÒÓÈÒ«mË}ˆº¯ºm a1 , a 2 ,..., a n ¯ÈmÓÈӂãËmºä‚mË}ˆº¯‚
     
     
    ËääȺ}ÈÏÈÓÈ



iº}ÈÎËäˆË¹Ë¯ ˆËº¯Ëä‚


   iº}ÈÏȈËã°ˆmº
    
        iº}ÈÎËäÓ˺­²ºÒ亰ˆ 
                                             → → →
             ‚°ˆ ˆ¯ÒmË}ˆº¯È a1, a2 , a3 ãÒÓˮӺÏÈmÒ°Ò䩈ºË°ˆ °‚Ë°ˆm‚ ˆˆ¯ÒºÓº
                                                                                                               →              →       →    →
            m¯ËäËÓÓº ÓË ¯ÈmÓ©² ӂã  Ò°ãÈ λ1 , λ2 , λ3  ˆÈ}Ò² ˆº λ1 a1 + λ2 a2 + λ3 a3 = o 
            ‘ºÈ ¹º ãËääË  ºÒÓ ÒÏ mË}ˆº¯ºm Ë°ˆ  ãÒÓË®ÓÈ« }ºä­ÒÓÈÒ« m‚² º°
            ˆÈã Ó©²ÒÏÓÈ҈ÈÓөˈ¯ÒmË}ˆº¯È}ºä¹ãÈÓȯө
      
      
                                                                                                        →         →
            iº}ÈÎË亰ˆÈˆºÓº°ˆ m¹¯Ë¹ºãºÎËÓÒÒˆºmË}ˆº¯© a1 Ò a 2 ÓË}ºããÒÓËȯ
                                                                                       →      →   →
            Ó© ‚°ˆ  ÈÓ© ˆ¯Ò }ºä¹ãÈÓȯө² mË}ˆº¯È a1 , a 2 , a 3  Ë¯ËÓË°Ëä ªˆÒ mË}ˆº¯©
            ˆÈ}Ò亭¯ÈϺ䈺­©Ò²ÓÈÈãȹº¹ÈãÒmºӂˆº}‚