Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 252 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
˺¯ËäÈ

p°ãÒ
E
2
º¯ººÓÈãÓºËº¹ºãÓËÓÒË¹º¹¯º°¯ÈÓ°mÈ
E
1
E
º
E
1
«mã«
Ë°«º¯ººÓÈãÓ©äº¹ºãÓËÓÒËä
E
2
.
iº}ÈÏÈËã°mº
iã« }Èκº ªãËäËÓÈ
x
E
2
¹º °ãºmÒ°ã˰mÒ« ÒäËË ä˰º ¯ÈmËÓ°mº
(,) ;
yx y E
=∀
0
1
sºªººÏÓÈÈË º ã« }Èκº
y
E
1
°¹¯ÈmËãÒmº
(,) ;
xy x E
=∀
0
2
º˰
E
1
«mã«Ë°«º¯ººÓÈãÓ©äº¹ºãÓËÓÒËä}
E
2
m
E

˺¯ËäÈº}ÈÏÈÓÈ
|¹¯ËËãËÓÒË

{Ëm}ãÒºmºä¹¯º°¯ÈÓ°mË
E
ªãËäËÓ
y
ÓÈÏ©mÈË°«vézvmvtjstvpwév
nr|qnpªãËäËÓÈ
x
ÓÈ¹º¹¯º°¯ÈÓ°mº
E
˰ãÒ
°
yE
°
(,)
xyz zE−=
0

cȰ°äº¯Òä °¹º°º ¹º°¯ºËÓÒ« º¯ººÓÈãÓº® ¹¯ºË}ÒÒ ÓË}ºº¯ºº ªãËäËÓÈ
xE
ÓÈ¹º¹¯º°¯ÈÓ°mº
EE
 ˰ãÒ
E
«mã«Ë°«
k
ä˯өä ¹ º ¹¯º°¯ÈÓ°mºä {
ªºä °ãÈË m
E
°˰mË ÈÏÒ°
{, ,..., }
gg g
k12
Ò}ÈΩ® ªãËäËÓ
∀∈
zE
 m ºä
Ò°ãËÒ
y
äºÎË©¹¯Ë°ÈmãËÓmmÒËãÒÓˮӺ®}ºäÒÓÈÒÒÈÏÒ°Ó©²mË}º¯ºm
°
=
=
k
i
ii
gy
1
ξ
 º˯Ëä Ò°ãÈ
],1[,
ki
i
=
ξ
È} º©
(,)
xyz zE−=
0

iã«ªººÓ˺²ºÒäºÒº°ÈºÓºº©ªãËäËÓ
y
©ãº¯ººÓÈãËÓ}ÈκäÒÏÈ
ÏÒ°Ó©² ªãËäËÓºm ¹º¹¯º°¯ÈÓ°mÈ
E
 º ˰
(,) , [,]
xyg j k
j
−==
01
 sº ºÈ
Ò°ãÈ
ξ
i
ik
,[,]
=
1
ÓȲº«°«ÒÏ°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
],1[,0),(
1
kjggx
j
k
i
ii
==
=
ξ
ÒãÒ
],1[,),(),(
1
kjgxgg
j
k
i
iji
==
=
ξ

º°}ºã} º°ÓºmÓÈ« äÈ¯ÒÈªº® °Ò°Ëä© }È} äÈ¯ÒÈ ¯ÈäÈ ÓÈº¯È ãÒÓˮӺ
ÓËÏÈmÒ°Ò䩲ªãËäËÓºm
gg g
k12
, ,...,
°ä°ã˰mÒËÓËm©¯ºÎËÓÓÈ«º¹º˺
¯ËäËz¯Èä˯È¯ËËÓÒËÈÓÓº®°Ò°Ëä©°˰mËÒËÒÓ°mËÓÓº
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



 ‘˺¯ËäÈ              p°ãÒ E2º¯ˆººÓÈã Ӻ˺¹ºãÓËÓÒ˹º¹¯º°ˆ¯ÈÓ°ˆmÈ E1⊂Eˆº E1 «mã«
 
                       ˈ°«º¯ˆººÓÈã ө亹ºãÓËÓÒËäE2 .

  iº}ÈÏȈËã°ˆmº
         
         
         iã« }Èκº ªãËäËӈÈ x∈E2 ¹º ‚°ãºmÒ  °ã˰ˆmÒ« ÒäËˈ ä˰ˆº ¯ÈmËÓ°ˆmº
          ( y , x ) = 0 ; ∀y ∈ E 1  sº ªˆº ºÏÓÈÈˈ ˆº ã« }Èκº y∈E1 °¹¯ÈmËãÒmº
           ( x , y ) = 0 ; ∀x ∈ E 2 ˆº˰ˆ E1«mã«Ëˆ°«º¯ˆººÓÈã ө亹ºãÓËÓÒËä}E2mE
          
          
     ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
          
          
 |¹¯ËËãËÓÒË              {Ëm}ãÒºmºä¹¯º°ˆ¯ÈÓ°ˆmË EªãËäËӈ yÓÈÏ©mÈˈ°«vézvmvtjstvpwév
 
                           nr|qnpªãËäËӈÈxÓȹº¹¯º°ˆ¯ÈÓ°ˆmº E ∗ ˰ãÒ
                           


                                                     ° y ∈ E ∗ 

                                                     ° ( x − y , z ) = 0        ∀z ∈ E ∗ 
          
          
          
          cȰ°äºˆ¯Òä °¹º°º­ ¹º°ˆ¯ºËÓÒ« º¯ˆººÓÈã Óº® ¹¯ºË}ÒÒ ÓË}ºˆº¯ºº ªãËäËӈÈ
x ∈ E  ÓÈ ¹º¹¯º°ˆ¯ÈÓ°ˆmº E ∗ ⊂ E  ˰ãÒ E ∗  «mã«Ëˆ°« kä˯өä ¹º¹¯º°ˆ¯ÈÓ°ˆmºä {
ªˆºä °ã‚ÈË m E ∗  °‚Ë°ˆm‚ˈ ­ÈÏÒ° {g1 , g 2 ,..., g k }  Ò }ÈΩ® ªãËäËӈ ∀z ∈ E ∗  m ˆºä
Ò°ãËÒyäºÎˈ­©ˆ ¹¯Ë°ˆÈmãËÓmmÒËãÒÓˮӺ®}ºä­ÒÓÈÒÒ­ÈÏÒ°Ó©²mË}ˆº¯ºm
          
          
                                k
          ‚°ˆ  y =           ∑ξ i g i  º­Ë¯Ëä Ò°ãÈ ξ i , i = [1, k ]  ˆÈ} ˆº­© ( x − y, z) = 0                        ∀z ∈ E ∗ 
                               i =1
i㫪ˆººÓ˺­²ºÒäºÒº°ˆÈˆºÓºˆº­©ªãËäËӈ y­©ãº¯ˆººÓÈãËÓ}Èκä‚ÒÏ­È
ÏÒ°Ó©² ªãËäËӈºm ¹º¹¯º°ˆ¯ÈÓ°ˆmÈ E ∗  ˆº ˰ˆ  ( x − y , g j ) = 0                                    , ∀j = [1, k ]  sº ˆºÈ
Ò°ãÈ ξi , i = [1, k ] ÓȲº«ˆ°«ÒϰҰˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®
       
       
                       k                                                       k
                ( x − ∑ ξ i g i ,g j ) = 0 , ∀j = [1, k ] ÒãÒ ∑ ( g i ,g j )ξ i = ( x, g j ) , ∀j = [1, k ] 
                      i =1                                                    i =1
      
      
      º°}ºã }‚ º°ÓºmÓÈ« äȈ¯ÒÈ ªˆº® °Ò°ˆËä© }È} äȈ¯ÒÈ €¯ÈäÈ ÓÈ­º¯È ãÒÓˮӺ
ÓËÏÈmÒ°Ò䩲ªãËäËӈºm g1 , g 2 ,..., g k °ä°ã˰ˆmÒË ÓËm©¯ºÎËÓÓÈ«ˆº¹ºˆËº
¯ËäË z¯ÈäË¯È ¯Ë ËÓÒËÈÓÓº®°Ò°ˆËä©°‚Ë°ˆm‚ˈÒËÒÓ°ˆmËÓÓº