Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 253 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã
 

pm}ãÒºmº¹¯º°¯ÈÓ°mº
|äËÒäº˰ãÒÈÏÒ°
{ , ,..., }ee e
k
12
m¹º¹¯º°¯ÈÓ°mË
E
º¯ºÓº¯äÒ¯ºmÈÓ
Ó©®ºº¯ººÓÈãÓÈ«¹¯ºË}Ò«ªãËäËÓÈ
x
ÓÈ
E
˰ªãËäËÓmÒÈ
.),(
1
=
=
k
i
ii
eexy
ÈÈ

Ænkrsqlvkvuwévxzéjtxzkn
E
4
ktnrvzvévuvézvtvéuqévkjttvuijoq
xnxqxznujsqtnpt}yéjktntqp
ξ
ξ
ξ
ξ
ξ
ξ
1234
12
0
20
+−−=
+=
ojljnzwvlwévxzéjtxzkv
E
Ëjpzqkëzvuijoqxnujzéq|yvwnéjzv
éjvézvmvtjstvmvwévnrzqévkjtq¹ësnuntzvk
E
4
tj
E

ËÓÒË
°
 ~ÈÈÏÒ°¹º¹¯º°¯ÈÓ°mÈ
E
äºÎÓºmÏ«¹È¯ªãËäËÓºm
g
1
Ò
g
2
}ºº¯ÒÓÈ
Ó©Ë°ºã©}ºº¯©²º¯ÈÏÁÓÈäËÓÈãÓ°Ò°Ëä¯ËËÓÒ®ã«
ξ
ξ
ξ
ξ
ξ
ξ
1234
12
0
20
+−−=
+=
Óȹ¯Òä˯
1
0
2
1
;
0
1
2
1
21
=
=
gg

°
 º°}ºã}
dim
E
=2
 º ¯ÈÏä˯Ӻ° º¯ººÓÈãÓºº º¹ºãÓËÓÒ«
E
°ºãȰӺ
˺¯ËäË  È}ÎË ¯ÈmÓÈ
2
 ~È ÈÏÒ° º¯ººÓÈãÓºº º¹ºãÓËÓÒ«
E
ºÓº
¹¯ÒÓ«ªãËäËÓ©
g
3
Ò
g
4
È}ÒËº
0
0
1
2
;
1
1
1
1
43
=
= gg
¹º°}ºã}ºÓÒ
 ãÒÓˮӺÓËÏÈmÒ°Òä©Ò
 º¯ººÓÈãÓ©}ÈκäªãËäËÓÒÏ¹º¹¯º°¯ÈÓ°mÈ
E
}È}º
¯ÈϺmÈÓÓ©ËÒÏ}ºªÁÁÒÒËÓºmÏÈÈÓÓº®m°ãºmÒÒÏÈÈÒ°Ò°Ë
ä©ãÒÓˮө²¯ÈmÓËÓÒ®
cÈÏËã
pm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº



           |ˆäˈÒä ˆº ˰ãÒ ­ÈÏÒ° {e1 , e2 ,..., ek }  m ¹º¹¯º°ˆ¯ÈÓ°ˆmË E ∗  º¯ˆºÓº¯äÒ¯ºmÈÓ
                                                                                                                              k
Ó©®ˆºº¯ˆººÓÈã ÓÈ«¹¯ºË}Ò«ªãËäËӈÈxÓÈ E ∗ ˰ˆ ªãËäËӈmÒÈ y =                                                    ∑ ( x, ei )ei . 
                                                                                                                             i =1
           
           
           
    ~ÈÈÈ              Ænkrsqlvkvuwévxzéjtxzkn E 4 ktnrvzvévuvézvtvéuqévkjttvuijoq
                  xnxqxznujsqtnpt€}yéjktntqp
                          
                                                                         ξ1 + ξ2 − ξ3 − ξ4 = 0
                                                                                               
                                                                        2ξ1 + ξ2           =0
                          
                          ojljnzwvlwévxzéjtxzkv E ∗ Ëjpzqkëzvuijoqxnujzéq|yvwnéjzv
                          éjvézvmvtjstvmvwévnrzqévkjtq¹ësnuntzvkE 4 tj E ∗ 
           
           
cËËÓÒË
           
°      ~È­ÈÏÒ°¹º¹¯º°ˆ¯ÈÓ°ˆmÈ E ∗ äºÎÓºmÏ«ˆ ¹È¯‚ªãËäËӈºm g1 Ò g 2 }ºº¯ÒÓȈ
           ө˰ˆºã­©}ºˆº¯©²º­¯Èς ˆÁ‚ÓÈäËӈÈã ӂ °Ò°ˆËä‚¯Ë ËÓÒ®ã«
           
                                                          ξ1 + ξ2 − ξ3 − ξ4 = 0
                                                                                 
                                                         2ξ1 + ξ2           = 0
           
           
                                         −1                      −1
                                            2                       2
           Óȹ¯Òä˯ g1 =                    ;        g2 =           
                                            1                       0
                                            0                       1
           
°      º°}ºã }‚ dim E ∗ =2 ˆº ¯ÈÏä˯Ӻ°ˆ  º¯ˆººÓÈã Óºº º¹ºãÓËÓÒ« E ∗  °ºãȰӺ
           ˆËº¯ËäË  ˆÈ}ÎË ¯ÈmÓÈ 2 ~È ­ÈÏÒ° º¯ˆººÓÈã Óºº º¹ºãÓËÓÒ« E ∗  ‚º­Óº
                                                                                            1                     2
                                                                                            1                     1
           ¹¯ÒÓ«ˆ ªãËäËӈ© g 3 Ò g 4 ˆÈ}Òˈº g 3 =                                     ;      g4 =         ¹º°}ºã }‚ºÓÒ
                                                                                         −1                       0
                                                                                         −1                       0

                               ãÒÓˮӺÓËÏÈmÒ°Òä©Ò
                              
                               º¯ˆººÓÈã Ó© }ÈÎºä‚ ªãËäËӈ‚ ÒϹº¹¯º°ˆ¯ÈÓ°ˆmÈ E ∗ }È}º­
                                  ¯ÈϺmÈÓÓ©ËÒÏ}ºªÁÁÒÒËӈºmÏÈÈÓÓº®m‚°ãºmÒÒÏÈÈÒ°Ò°ˆË
                                  ä©ãÒÓˮө²‚¯ÈmÓËÓÒ®