Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 255 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã
 

pm}ãÒºmº¹¯º°¯ÈÓ°mº
vº¹¯«ÎËÓÓ©Ëº¹Ë¯Èº¯©mËm}ãÒºmºä¹¯º°¯ÈÓ°mË
º°}ºã} Ëm}ãÒºmº ¹¯º°¯ÈÓ°mº «mã«Ë°« ȰÓ©ä °ãÈËä ãÒÓˮӺº ¹¯º
°¯ÈÓ°mÈ º m°Ë ÒÏãºÎËÓÓ©Ë m ¯ÈÏËãË  m˯ÎËÓÒ« °¹¯ÈmËãÒm© Ò ã« ãÒÓˮө²
º¹Ë¯Èº¯ºm Ë®°mÒ² m Ëm}ãÒºmºä ¹¯º°¯ÈÓ°mË |ÓÈ}º º¹Ë¯ÈÒ« °}È㫯Ӻº
¹¯ºÒÏmËËÓÒ« ¹ºÏmºã«Ë Ëã« m Ëm}ãÒºm©² ¹¯º°¯ÈÓ°mȲ °¹ËÒÁÒ˰}ÒË }ãȰ°©
ãÒÓˮө²º¹Ë¯Èº¯ºmºãÈÈÒ²¯«ºä¹ºãËÏÓ©²°mº®°m
|¹¯ËËãËÓÒË

ÒÓˮө® º¹Ë¯Èº¯
A
+
 ÏÈÈÓÓ©®m Ëm}ãÒºmºä ¹¯º°¯ÈÓ°mË
E
 ÓÈ
Ï©mÈË°« xvwé¹nttu sqtnptvuy vwnéjzvéy
A
 ˰ãÒ ã«
∀∈
xy E,
ÒäËËä˰º¯ÈmËÓ°mº
(
,) (,
)
Ax y x A y
=
+

¯Òä˯

{ Ëm}ãÒºmºä ¹¯º°¯ÈÓ°mË º¯ÈϺmÈÓÓºä ˰}ºÓË Óº ÒÁÁ˯ËÓÒ
¯Ëä©äÒ ÁÓ} Ò«äÒ ¯ÈmÓ©äÒ Óã mÓË ÓË}ºº¯ºº }ºÓËÓºº ÒÓ
˯mÈãÈ°º°}È㫯өä¹¯ºÒÏmËËÓÒËä
(,) ()()
xy x y d
=
−∞
+∞
τττ
ã«ãÒÓË®
Óºº º¹Ë¯Èº¯È
A
d
d
=
τ
ÒÁÁ˯ËÓÒ¯ºmÈÓÒ« °º¹¯«ÎËÓÓ©ä Ë
º¹Ë¯Èº¯
A
d
d
+
=−
τ

iË®°mÒËãÓº °ºãȰӺ ¹¯ÈmÒã ÒÓ˯үºmÈÓÒ« Ó˰º°mËÓÓ©² ÒÓ
˯Èãºm¹ºȰ«äÒäËä˰º¯ÈmËÓ°mÈ
(
,)
Ax y
=
dx
d
yd xy x
dy
d
d
()
() ()() ()
()
τ
τ
ττ τ τ τ
τ
τ
τ
−∞
+∞
−∞
+∞
−∞
+∞
∫∫
=− =

=− =
+
−∞
+∞
x
dy
d
dxAy
()(
()
)(,
)
τ
τ
τ
τ

cȰ°äº¯Òä ˹˯}ºÓËÓºä˯ӺË Ëm}ãÒºmº ¹¯º°¯ÈÓ°mº
E
n
°ÈÏÒ°ºä
{, ,..., }
gg g
n
12
Ò m©«°ÓÒä °m«Ï äÈ¯Ò ãÒÓˮө² º¹Ë¯Èº¯ºm
A
Ò
A
+
m ªºä ÈÏÒ°Ë
¹¯Ë¹ºãºÎÒmº°º¹¯«ÎËÓÓ©®º¹Ë¯Èº¯°˰mË
°äÈ¯Ò©º¹Ë¯Èº¯ºm
A
Ò
A
+
ÒäË°ººmË°mËÓÓº
A
g
Ò
A
g
+
È
ªãËäËÓ©
x
Ò
y
¹¯Ë°Èmã«°«mÈÏÒ°Ë
{, ,..., }gg g
n
12
}ºº¯ÒÓÈÓ©äÒ°ºãÈäÒ
n
ξ
ξ
ξ
...
2
1

cÈÏËã
pm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº



vº¹¯«ÎËÓө˺¹Ë¯Èˆº¯©mËm}ãÒºmºä¹¯º°ˆ¯ÈÓ°ˆmË
      
      
      
      º°}ºã }‚ Ëm}ãÒºmº ¹¯º°ˆ¯ÈÓ°ˆmº «mã«Ëˆ°« ȰˆÓ©ä °ã‚ÈËä ãÒÓˮӺº ¹¯º
°ˆ¯ÈÓ°ˆmÈ ˆº m°Ë ÒÏãºÎËÓÓ©Ë m ¯ÈÏËãË  ‚ˆm˯ÎËÓÒ« °¹¯ÈmËãÒm© Ò ã« ãÒÓˮө²
º¹Ë¯Èˆº¯ºm Ë®°ˆm‚ Ò² m Ëm}ãÒºmºä ¹¯º°ˆ¯ÈÓ°ˆmË |ÓÈ}º º¹Ë¯ÈÒ« °}È㫯Ӻº
¹¯ºÒÏmËËÓÒ« ¹ºÏmºã«Ëˆ m©Ë㫈  m Ëm}ãÒºm©² ¹¯º°ˆ¯ÈÓ°ˆmȲ °¹ËÒÁÒ˰}ÒË }ãȰ°©
ãÒÓˮө²º¹Ë¯Èˆº¯ºmº­ãÈÈ Ò²¯«ºä¹ºãËÏÓ©²°mº®°ˆm
      
      
    |¹¯ËËãËÓÒË          ÒÓˮө® º¹Ë¯Èˆº¯ A +  ÏÈÈÓÓ©® m Ëm}ãÒºmºä ¹¯º°ˆ¯ÈÓ°ˆmË E ÓÈ
    
                          Ï©mÈˈ°« xvwé¹ ntt€u sqtnptvuy vwnéjzvéy A  ˰ãÒ ã« ∀x , y ∈ E 
                                                    , y ) = ( x , A + y ) 
                          ÒäËˈä˰ˆº¯ÈmËÓ°ˆmº ( Ax
           
           
    ¯Òä˯               { Ëm}ãÒºmºä ¹¯º°ˆ¯ÈÓ°ˆmË º­¯ÈϺmÈÓÓºä ­Ë°}ºÓËÓº ÒÁÁ˯ËÓÒ
                  ¯‚Ëä©äÒ Á‚Ó}Ò«äÒ ¯ÈmÓ©äÒ ӂã  mÓË ÓË}ºˆº¯ºº }ºÓËÓºº ÒÓ
                                                                                                            +∞
                          ˆË¯mÈãȰº°}È㫯ө乯ºÒÏmËËÓÒËä ( x , y ) =                                  ∫ x(τ ) y(τ )dτ ã«ãÒÓË®
                                                                                                            −∞
                                                                  d
                          Óºº º¹Ë¯Èˆº¯È A =                       ÒÁÁ˯ËÓÒ¯ºmÈÓÒ«  °º¹¯«ÎËÓÓ©ä ­‚ˈ
                                                                  dτ
                                                        d
                          º¹Ë¯Èˆº¯ A + = −               
                                                        dτ
                          
                          iË®°ˆm҈Ëã Óº °ºãȰӺ ¹¯ÈmÒã‚ Òӈ˯үºmÈÓÒ« Ó˰º­°ˆmËÓÓ©² ÒÓ
                          ˆË¯Èãºm¹ºȰˆ«äÒäË ˆä˰ˆº¯ÈmËÓ°ˆmÈ
                          
                                                         +∞                                         + ∞       +∞
                                                            dx (τ )                                                      dy (τ )
                                             , y) =
                                          ( Ax           ∫−∞ dτ y(τ )dτ = x(τ ) y(τ )               − ∞
                                                                                                          −   ∫ x (τ )
                                                                                                              −∞
                                                                                                                          dτ
                                                                                                                                 dτ = 
                                                        +∞
                                                                          dy (τ )
                           =       ∫    x (τ )( −           )dτ = ( x , A + y ) 
                                                        −∞
                                                                           dτ
           
           cȰ°äºˆ¯Òä ˆË¹Ë¯  }ºÓËÓºä˯ӺË Ëm}ãÒºmº ¹¯º°ˆ¯ÈÓ°ˆmº E n  ° ­ÈÏÒ°ºä
{g1 , g 2 ,..., g n }  Ò m©«°ÓÒä °m«Ï  äȈ¯Ò ãÒÓˮө² º¹Ë¯Èˆº¯ºm A  Ò A +  m ªˆºä ­ÈÏÒ°Ë
¹¯Ë¹ºãºÎÒmˆº°º¹¯«ÎËÓÓ©®º¹Ë¯Èˆº¯°‚Ë°ˆm‚ˈ
      
           ‚°ˆ äȈ¯Ò©º¹Ë¯Èˆº¯ºm A Ò A + ÒäË ˆ°ººˆmˈ°ˆmËÓÓºmÒ A                                                       Ò A +        È
                                                                                                                                 g               g

                                                                                        ξ1
                                                                                        ξ2
ªãËäËӈ©xÒy¹¯Ë°ˆÈmã« ˆ°«m­ÈÏÒ°Ë {g1 , g 2 ,..., g n } }ºº¯ÒÓȈөäÒ°ˆºã­ÈäÒ     
                                                                                        ...
                                                                                        ξn