Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 258 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
˺¯ËäÈ

|¯ººÓÈãÓºË º¹ºãÓËÓÒË ºãȰÒ ÏÓÈËÓÒ® º¹Ë¯Èº¯È
A
m
E
n
«m
ã«Ë°««¯ºäº¹Ë¯Èº¯È
A
+
iº}ÈÏÈËã°mº
° º}ÈÎËämÓÈÈãËº«¯ºº¹Ë¯Èº¯È
A
+
ººÏÓÈÈËäºË˯ËÏ
ker
A
+
°º
˯ÎÒ°« mº äÓºÎ˰mË
Π
º¯ººÓÈãÓºä º¹ºãÓËÓÒÒ ºãȰÒ ÏÓÈËÓÒ®
º¹Ë¯Èº¯È
A

iË®°mÒËãÓºãº® ªãËäËÓ
yA
+
ker
º˰È}º®º
Ay o
+
=
Ë
º¯ººÓÈãËÓªãËäËÓ
bAxxE
n
=∈
,
¹º°}ºã}
(, ) (
,) (,
)by Axy xA y
== =
+
0

° ˹˯º°ÈºÓº¹º}ÈÏÈº ¯ÈÏä˯Ӻ°Ò
ker
A
+
Ò
Π
°ºm¹ÈÈiË®°
mÒËãÓº°ºÓº®°º¯ºÓ©m°ÒãÓËm©¯ºÎËÓÓº°ÒäÈ¯Ò©¯ÈäÈÒ˺
¯Ëä©
dim( ker
)rg
rg (
)rg
rg
TT
An An A n An A
++
=− =− =− =−
ΓΓ
1

sº ° ¯º® °º¯ºÓ© ¹º ˺¯ËäË  ¯ÈÏä˯Ӻ°ºãȰÒÏÓÈËÓÒ®
A
¯ÈmÓÈ
rg
A
¹ºªºä
dim( ) rg
Π
=−
nA
¹º˺¯ËäË
˺¯ËäÈº}ÈÏÈÓÈ
~ÈäËÈÓÒË
mÒ°¹ºãϺmÈÓÓ©²ººÏÓÈËÓÒ«²˺¯ËäÈº¹°}ÈË
°nº¯äãÒ¯ºm} °ºm¹ÈÈ ° Áº¯äãÒ¯ºm}º® ˺¯Ëä© 

¹º
°}ºã}°ºmä˰Óº°°Ò°Ëä©
Ax b=
ºÏÓÈÈËºªãËäËÓ
b
¹¯ÒÓÈ
ãËÎÒºãȰÒÏÓÈËÓÒ®ãÒÓˮӺºº¹Ë¯Èº¯È
A

°
{ ¹¯Ë¹ºãºÎËÓÒÒ º °ºã©
y
Ò
b
° }ºº¯ÒÓÈÓ©Ë ¹¯Ë
°ÈmãËÓÒ«ªãËäËÓºm
E
m
mº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°ËÈ}ÎËÒÓÒÎË
°ãËÁº¯äãÒ¯ºm}
˺¯ËäÈ

˺¯ËäÈ
n¯ËºãäÈ
vÒ°ËäÈ ãÒÓˮө² ¯ÈmÓËÓÒ®
Ax b
=
°ºmä˰ÓÈ ºÈ Ò
ºã}º ºÈ È }ÈκË ¯ËËÓÒË ºÓº¯ºÓº® °º¹¯«ÎËÓÓº®
°Ò°Ëä©
Ay o
T
=
º¯ººÓÈãÓº °ºã °mººÓ©² ãËÓºm
b

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



 ‘˺¯ËäÈ                |¯ˆººÓÈã ÓºË º¹ºãÓËÓÒË º­ãȰˆÒ ÏÓÈËÓÒ® º¹Ë¯Èˆº¯È A  m E n  «m
 
                        ã«Ëˆ°««¯ºäº¹Ë¯Èˆº¯È A + 


  iº}ÈÏȈËã°ˆmº
   
          ° º}ÈÎËä mÓÈÈãË ˆº «¯º º¹Ë¯Èˆº¯È A +  º­ºÏÓÈÈËäºË ˯ËÏ ker A + °º
                  ˯Î҈°« mº äÓºÎ˰ˆmË Π  º¯ˆººÓÈã Óºä º¹ºãÓËÓÒÒ º­ãȰˆÒ ÏÓÈËÓÒ®
                  º¹Ë¯Èˆº¯È A 
                  
                  iË®°ˆm҈Ëã Óº ã ­º® ªãËäËӈ y ∈ ker A +  ˆº ˰ˆ  ˆÈ}º® ˆº A + y = o  ­‚ˈ
                                             , x ∈ E n ¹º°}ºã }‚
                  º¯ˆººÓÈãËÓªãËäËӈ‚ b = Ax
                  
                                                                        , y ) = ( x , A + y ) = 0 
                                                           (b, y ) = ( Ax
                  
          ° ‘˹˯ º°ˆÈˆºÓº¹º}ÈÏȈ ˆº¯ÈÏä˯Ӻ°ˆÒ ker A + ÒΠ°ºm¹ÈÈ ˆiË®°ˆ
               m҈Ëã Óº°ºÓº®°ˆº¯ºÓ©m°Òã‚ÓËm©¯ºÎËÓÓº°ˆÒäȈ¯Ò©€¯ÈäÈ҈˺
               ¯Ëä©
          
                                                                             −1
                  dim( ker A + ) = n − rg A + = n − rg ( Γ                       A       Γ ) = n − rg A             = n − rg A 
                                                                                        T                           T


          
                  sº ° ¯‚º® °ˆº¯ºÓ© ¹º ˆËº¯ËäË  ¯ÈÏä˯Ӻ°ˆ  º­ãȰˆÒ ÏÓÈËÓÒ® A 
                  ¯ÈmÓÈ rg A ¹ºªˆºä‚ dim( Π ) = n − rg A ¹ºˆËº¯ËäË
          
     ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
~ÈäËÈÓÒË mÒ°¹ºã ϺmÈÓÓ©²º­ºÏÓÈËÓÒ«²ˆËº¯ËäȺ¹‚°}Èˈ

                      °nº¯ä‚ãÒ¯ºm}‚ °ºm¹ÈÈ ‚  ° Áº¯ä‚ãÒ¯ºm}º® ˆËº¯Ëä©  ¹º
                                                        = b ºÏÓÈÈˈˆºªãËäËӈ b¹¯ÒÓÈ
                         °}ºã }‚°ºmä˰ˆÓº°ˆ °Ò°ˆËä© Ax
                         ãËÎ҈º­ãȰˆÒÏÓÈËÓÒ®ãÒÓˮӺºº¹Ë¯Èˆº¯È A 
              
                      °{ ¹¯Ë¹ºãºÎËÓÒÒ ˆº °ˆºã­©                       y  Ò b  °‚ˆ  }ºº¯ÒÓȈөË ¹¯Ë
                         °ˆÈmãËÓÒ«ªãËäËӈºm E m mº¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏҰˈÈ}ÎËÒÓÒÎË
                         °ãË‚ ‚ Áº¯ä‚ãÒ¯ºm}‚
              
              
 ‘˺¯ËäÈ                    vÒ°ˆËäÈ ãÒÓˮө² ‚¯ÈmÓËÓÒ® A x = b  °ºmä˰ˆÓÈ ˆºÈ Ò
 
  ‘˺¯ËäÈ
                             ˆºã }º ˆºÈ }ºÈ }ÈÎºË ¯ËËÓÒË ºÓº¯ºÓº® °º¹¯«ÎËÓÓº®
 n¯ËºãäÈ                 °Ò°ˆËä©            A
                                                     T
                                                         y = o  º¯ˆººÓÈã Óº °ˆºã­‚ °mº­ºÓ©² ãËÓºm
                                b