Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 27 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
31
{Ë}º¯©ÒãÒÓˮөËº¹Ë¯ÈÒÒ°ÓÒäÒ
º¯ÒÓÈÈäÒºË°Ë°mËÓÓ©ä¹¯Ë°Èmã«Ë°«mº¹¯º°ººä}È}m©¹ºãÓ«°«º¹Ë¯ÈÒÒ
°mË}º¯ÈäÒm}ºº¯ÒÓÈÓºä¹¯Ë°ÈmãËÓÒÒ
|}ÈÏ©mÈË°« mºÏäºÎÓº ÓË ºã}º ÏȹҰ©mÈ mË}º¯© ¹¯Ò ¹ºäºÒ äÈ¯Ò
°ºãºmÓºÒº¹Ë¯Ò¯ºmÈ°ÓÒäÒmäÈ¯ÒÓº®Áº¯äË¹º°}ºã}¹¯ÈmÒãÈË®°mÒ®°
mË}º¯ÈäÒm}ºº¯ÒÓÈÓº®Áº¯äË°ºm¹ÈÈ°¹¯ÈmÒãÈäÒ°ººmË°mÒ²º¹Ë¯ÈÒ®°
äÈ¯ÒÈäÒ
jäËËäË°º
˺¯ËäÈ

{ }ºº¯ÒÓÈÓºä ¹¯Ë°ÈmãËÓÒÒ º¹Ë¯ÈÒÒ ° mË}º¯ÈäÒ ÒäË °ãË
Ò®mÒ
°
 féjktntqn
knrzvévk
imÈ mË}º¯È
++=
332211
gggx
ξ
ξ
ξ
Ò
++=
332211
gggy
ηηη
¯ÈmÓ©ºÈÒºã}ººÈ}º
È
3
2
1
3
2
1
η
η
η
ξ
ξ
ξ
=
ÒãÒ
=
=
=
33
22
11
η
ξ
η
ξ
η
ξ

°

fsvntqn
knrzvévk
zºº¯ÒÓÈ© °ää© m² mË}º¯ºm
++=
332211
gggx
ξ
ξ
ξ
Ò
++=
332211
gggy
ηηη
¯ÈmÓ©
°ääÈä°ººmË°mÒ²}ºº¯ÒÓÈ°ãÈÈË䩲
33
22
11
3
2
1
3
2
1
η
ξ
η
ξ
η
ξ
η
η
η
ξ
ξ
ξ
+
+
+
=+

°

Ïutvntqn
knrzvévk
tj·qxsv
zºº¯ÒÓÈ© ¹¯ºÒÏmËËÓÒ« mË}º¯È
++=
332211
gggx
ξ
ξ
ξ
ÓÈÒ°ãº
λ
¯ÈmÓ©¹¯ºÒÏmËËÓÒ
«ä°ººmË°mÒ²}ºº¯ÒÓÈmË}º¯È
[
ÓÈªºÒ°
ãº
λ
3
2
1
3
2
1
λ
λ
ξ
λ
ξ
ξ
ξ
ξ
λ
=

c È Ï  Ë ã                                                      31
{Ë}ˆº¯©ÒãÒÓˮө˺¹Ë¯ÈÒÒ°ÓÒäÒ



º¯ÒÓȈÈäÒˆºË°ˆË°ˆmËÓө乯˰ˆÈmã«Ëˆ°«mº¹¯º°ºˆºä}È}m©¹ºãÓ« ˆ°«º¹Ë¯ÈÒÒ
°mË}ˆº¯ÈäÒm}ºº¯ÒÓȈӺ乯˰ˆÈmãËÓÒÒ
          
          |}ÈÏ©mÈˈ°« mºÏäºÎÓº ÓË ˆºã }º ÏȹҰ©mȈ  mË}ˆº¯© ¹¯Ò ¹ºäºÒ äȈ¯Ò
 °ˆºã­ºm ÓºÒº¹Ë¯Ò¯ºmȈ °ÓÒäÒmäȈ¯ÒÓº®Áº¯ä˹º°}ºã }‚¹¯ÈmÒãÈË®°ˆmÒ®°
mË}ˆº¯ÈäÒm}ºº¯ÒÓȈӺ®Áº¯äË°ºm¹ÈÈ ˆ°¹¯ÈmÒãÈäÒ°ººˆmˈ°ˆm‚ Ò²º¹Ë¯ÈÒ®°
äȈ¯ÒÈäÒ
          
          
          jäËˈäË°ˆº
          
  ‘˺¯ËäÈ    { }ºº¯ÒÓȈӺä ¹¯Ë°ˆÈmãËÓÒÒ º¹Ë¯ÈÒÒ ° mË}ˆº¯ÈäÒ ÒäË ˆ °ãË‚ 
       Ò®mÒ
  
              
                             
                                                                                                                                   →              →              →               →
  
                             ° féjktntqn                           imÈ                     mË}ˆº¯È                             x = ξ1 g1 + ξ 2 g 2 + ξ 3 g 3                                     Ò
                                   knrzvévk                            →               →              →              →
                                                                            y = η1 g1 + η2 g 2 + η3 g 3 ¯ÈmÓ©ˆºÈÒˆºã }ºˆºÈ}º
                                                                        È
                                                                                                               ξ1    η1         ξ1 = η1
                                                                                                                               
                                                                                                               ξ 2 = η 2 ÒãÒ ξ 2 = η 2 
                                                                                                               ξ3    η3        ξ = η
                                                                                                                                3      3
                                                                        
                                                                        
                                                                      
                             ° fsv ntqn                            zºº¯ÒÓȈ©                                    °‚ää©                            m‚²                         mË}ˆº¯ºm
                                   knrzvévk                            →              →              →               →               →              →               →              →
                                                                            x = ξ1 g1 + ξ 2 g 2 + ξ 3 g 3  Ò y = η1 g1 + η2 g 2 + η3 g 3  ¯ÈmÓ©
                                                                        °‚ääÈä°ººˆmˈ°ˆm‚ Ò²}ºº¯ÒÓȈ°ãÈÈË䩲
                                                                        
                                                                                                                    ξ1    η1    ξ1 + η1
                                                                                                                    ξ 2 + η 2 = ξ 2 + η 2 
                                                                                                                    ξ3    η3    ξ 3 + η3
                                                                        
                                                                        
                            ° Ïutv ntqn                           zºº¯ÒÓȈ©                                            ¹¯ºÒÏmËËÓÒ«                                             mË}ˆº¯È
                                   knrzvévk                            →              →              →              →
                                   tj·qxsv                                x = ξ1 g1 + ξ 2 g 2 + ξ 3 g 3 ÓÈҰ㺠λ¯ÈmÓ©¹¯ºÒÏmËËÓÒ
                                                                                                                                                                           →
                                                                        «ä°ººˆmˈ°ˆm‚ Ò²}ºº¯ÒÓȈmË}ˆº¯È [ ÓȪˆºÒ°
                                                                        ãºλ
                                                                                                                             ξ1    λξ1
                                                                                                                           λ ξ 2 = λξ 2 
                                                                                                                             ξ3    λξ 3