Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 28 стр.

UptoLike

Составители: 

Рубрика: 

32
Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
iº}ÈÏÈËã°mº
iº}ÈÏÈËã°mº m°Ë² ¯Ë² ¹Ó}ºm ÈÓÈãºÒÓº ¹ºªºä ¯È°°äº¯Òä ãÒ
¹¯ÈmÒãº°ãºÎËÓÒ«mË}º¯ºmm}ºº¯ÒÓÈÓº®Áº¯äË
º°mº®°mÈäº¹Ë¯ÈÒ®°ãºÎËÓÒ«ÒäÓºÎËÓÒ«ÓÈmËË°mËÓÓºËÒ°ãºmË}º¯ºm
˺¯ËäÈÒäËËä
=+++++=+=+
)()(
332211332211
3
2
1
3
2
1
ggggggyx
ηηη
ξ
ξ
ξ
η
η
η
ξ
ξ
ξ

.)()()(
33
22
11
333222111
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
+
+
+
=+++++=
ggg
˺¯ËäÈº}ÈÏÈÓÈ

vãË°mÒË

zºº¯ÒÓÈ©ãÒÓˮӺ®}ºäÒÓÈÒÒmË}º¯ºm
λµ
xy
→→
+
«mã«°«ËäÒ
ÎË ãÒÓˮөäÒ }ºäÒÓÈÒ«äÒ °ººmË°mÒ² }ºº¯ÒÓÈ mË}º¯ºm
[
Ò
\

33
22
11
3
2
1
3
2
1
µηλξ
µηλξ
µηλξ
η
η
η
µ
ξ
ξ
ξ
λ
+
+
+
=+
cÈ°°äº¯Òä˹˯mº¹¯º°ººä}È}m}ºº¯ÒÓÈÓºä¹¯Ë°ÈmãËÓÒÒÏȹҰ©
°«°ãºmÒ«ãÒÓˮӺ®ÏÈmÒ°Ò亰ÒÒÓËÏÈmÒ°Ò亰ÒmË}º¯ºm
˺¯ËäÈ

iã« ºº º© mÈ mË}º¯È
2
1
ξ
ξ
=
x
Ò
2
1
η
η
=
y
ÓÈ ¹ãº°}º°Ò ©ãÒ
ãÒÓˮӺÏÈmÒ°Òä©Ó˺²ºÒäºÒ º°ÈºÓº º©Ò²}ºº¯ÒÓÈ©m
ÓË}ºº¯ºäÈÏÒ°ËºmãËmº¯«ãÒ°ãºmÒ
0det
22
11
=
ηξ
ηξ

iº}ÈÏÈËã°mº
iº}ÈÎËäÓ˺²ºÒ亰
° mË}º¯©
x
Ò
y
ãÒÓˮӺ ÏÈmÒ°Òä© ºÈ m °Òã ãËää©  ÒäËË
äË°º¯ÈmËÓ°mº
xy
→→
=
λ
ÒãÒm}ºº¯ÒÓÈÓº®Áº¯äË
=
=
22
11
ληξ
ληξ
j°}ãÒm
λ
ÒÏªÒ²m²°}È㫯ө²°ººÓºËÓÒ®¹ºãÒä
0
1221
=
ηξηξ
ÓºªºÒºÏÓÈ
32 Ë }  Ò Ò   } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



   iº}ÈÏȈËã°ˆmº
     
        iº}ÈÏȈËã °ˆmº m°Ë² ˆ¯Ë² ¹‚Ó}ˆºm ÈÓÈãºÒÓº ¹ºªˆºä‚ ¯È°°äºˆ¯Òä ãÒ 
        ¹¯ÈmÒ㺰ãºÎËÓÒ«mË}ˆº¯ºmm}ºº¯ÒÓȈӺ®Áº¯äË
        
        º°mº®°ˆmÈ亹˯ÈÒ®°ãºÎËÓÒ«Ò‚äÓºÎËÓÒ«ÓÈm˝˰ˆmËÓÓºËÒ°ãºmË}ˆº¯ºm
          ˆ ˺¯ËäÈ ÒäËËä
        
                             ξ1    η1
                                         → →         →        →         →           →        →        →
                             ξ 2 + η 2 = x + y = (ξ1 g1 + ξ 2 g 2 + ξ 3 g 3 ) + (η1 g1 + η 2 g 2 + η3 g 3 ) = 
                             ξ3    η3
                                                                                                   ξ1 + η1
                                                           →                     →                 →
                                        = (ξ1 + η1 ) g1 + (ξ 2 + η 2 ) g 2 + (ξ 3 + η3 ) g 3 = ξ 2 + η 2 . 
                                                                                                   ξ 3 + η3
     
     ‘˺¯ËäȺ}ÈÏÈÓÈ
            
            
                                                                                                        →        →
 vãË°ˆmÒË              zºº¯ÒÓȈ©ãÒÓˮӺ®}ºä­ÒÓÈÒÒmË}ˆº¯ºm λ x + µ y «mã« ˆ°«ˆËäÒ
                  ÎË ãÒÓˮөäÒ }ºä­ÒÓÈÒ«äÒ °ººˆmˈ°ˆm‚ Ò² }ºº¯ÒÓȈ mË}ˆº¯ºm
                                      ξ1      η1    λξ1 + µη1
                         →      →
                         [ Ò \  λ ξ 2 + µ η 2 = λξ 2 + µη 2 
                                      ξ3      η3    λξ 3 + µη3
       
       
       cÈ°°äºˆ¯Òä ˆË¹Ë¯  mº¹¯º° º ˆºä }È} m }ºº¯ÒÓȈӺä ¹¯Ë°ˆÈmãËÓÒÒ ÏȹҰ©
mÈ ˆ°«‚°ãºmÒ«ãÒÓˮӺ®ÏÈmÒ°Ò亰ˆÒÒÓËÏÈmÒ°Ò亰ˆÒmË}ˆº¯ºm
       
       
                                                                            →       ξ1      →   η1
 ‘˺¯ËäÈ                iã« ˆºº ˆº­© mÈ mË}ˆº¯È x =                             Ò y =     ÓÈ ¹ãº°}º°ˆÒ ­©ãÒ
                                                                              ξ2          η2
                         ãÒÓˮӺÏÈmÒ°Òä©Ó˺­²ºÒäºÒ º°ˆÈˆºÓºˆº­©Ò²}ºº¯ÒÓȈ©m
                                                                                                         ξ1 η1
                         ÓË}ºˆº¯ºä­ÈÏÒ°Ë‚ºmãˈmº¯«ãÒ‚°ãºmÒ  det                                           = 0 
                                                                                                         ξ 2 η2
        
  iº}ÈÏȈËã°ˆmº
      
      iº}ÈÎËäÓ˺­²ºÒ亰ˆ 
      
                                           →         →
                 ‚°ˆ  mË}ˆº¯© x  Ò y  ãÒÓˮӺ ÏÈmÒ°Òä© ˆºÈ m °Òã‚ ãËää©  ÒäËˈ
                                             →        →                                                      ξ1 = λη1
                 äË°ˆº¯ÈmËÓ°ˆmº x = λ y ÒãÒm}ºº¯ÒÓȈӺ®Áº¯äË                                                j°}ã Òm λ
                                                                                                            ξ 2 = λη2
                 ÒϪˆÒ²m‚²°}È㫯ө²°ººˆÓº ËÓÒ®¹ºã‚Òä ξ1η 2 − ξ 2η1 = 0 ÓºªˆºÒºÏÓÈ