Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 317 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


vmº®°mÈ¹ºm˯²Óº°Ë®mº¯ºº¹º¯«
ÒÓÈ ¹Ë¯ËäËÈË°« mºã ¯º® ¹È¯Èºã© º° }ºº¯º® ¹È¯ÈããËãÓÈ º°Ò ¹Ë¯mº®
¹È¯Èºã© È mËmÒ Óȹ¯ÈmãËÓ© ¹¯ºÒmº¹ºãºÎÓº ¹¯ÒËä Ò² ¹ãº°}º°Ò mÏÈÒäÓº
¹Ë¯¹ËÓÒ}㫯ө
°ҹ˯ºãÒ˰}Ò®¹È¯ÈºãºÒÒäËËmÈ°ËäË®°mÈwé¹uvsqtnpt}viéjoyíq}
p°ãÒÏȹҰÈ¯ÈmÓËÓÒËÈÓÓº®¹ºm˯²Óº°ÒmË
z
b
y
a
x
b
y
a
x
2))((
=+
ºäºÎÓº
¹¯Ò®Ò } ÏÈ}ãËÓÒ º¹¯Òã©² ÏÓÈËÓÒ«² ¹È¯ÈäË¯È
α
º}Ò ãËÎÈÒË ÓÈ
¹¯«ä©²
=
=+
z
b
y
a
x
b
y
a
x
)(
2
α
α
Ò
=+
=
z
b
y
a
x
b
y
a
x
)(
2
α
α
 È}ÎË ¹¯ÒÓÈãËÎÈ Ò ҹ˯ºãÒ˰}ºä
¹È¯ÈºãºÒ¹º°}ºã}¹ºãËÓÓºË¹Ë¯ËäÓºÎËÓÒË¯ÈmÓËÓÒ®¹ãº°}º°Ë®ÏÈÈÒ²
ªÒ¹¯«ä©ËÈË¯ÈmÓËÓÒËҹ˯ºãÒ˰}ºº¹È¯ÈºãºÒÈ
~ÈäËÒä º ã« }Èκ® º}Ò ҹ˯ºãÒ˰}ºº ¹È¯ÈºãºÒÈ °˰mË wjéj
wé¹u}¹¯º²º«Ò²˯ËÏªº}ÒËãÒ}ºäãËÎÈÒ²ÓÈҹ˯ºãÒ˰}ºä¹È
¯ÈºãºÒË¯ÈmÓËÓÒ«ªÒ²¹¯«ä©²äº©¹ºãËÓ©°ºÓº°ºÓË}ºº
¯ººº˺ÓËÓãËmººäÓºÎÒËã«¹Ëä¹ºº¯È}ºÓ}¯ËÓ©²ÏÓÈËÓÒ®¹È¯ÈäË¯È
α

¯|Óº¹ºãº°Ó©®ҹ˯ºãºÒ
|¹¯ËËãËÓÒË
¯
ºm˯²Óº° ÏÈÈmÈËäÈ«mÓË}ºº¯º®º¯ºÓº¯äÒ¯ºmÈÓÓº®°Ò°ËäË}º
º¯ÒÓÈ }ÈÓºÓÒ˰}Òä ¯ÈmÓËÓÒËä È
x
a
y
b
z
c
abc
2
2
2
2
2
2
1000
+−= >>>
;,,
 ÓÈÏ©mÈË°« vltvwvsvxztu mq
wnéivsvqlvu
vmº®°mÈºÓº¹ºãº°Óººҹ˯ºãºÒÈ
° |Óº¹ºãº°Ó©® ҹ˯ºãºÒÓ˺¯ÈÓÒËÓÓÈ« ¹ºm˯²Óº° ¹º°}ºã} ÒÏ ˺
}ÈÓºÓÒ˰}ºº¯ÈmÓËÓÒ«°ãËËº
z
∈−+
(,)

° |Óº¹ºãº°Ó©®ҹ˯ºãºÒºãÈÈË
ËÓ¯ÈãÓº®°ÒääË¯ÒË®ºÓº°ÒËãÓºÓÈÈãÈ}ºº¯ÒÓÈ
º°Ëmº®°ÒääË¯ÒË®ºÓº°ÒËãÓºm°Ë²}ºº¯ÒÓÈÓ©²º°Ë®
¹ãº°}º°Óº®°ÒääË¯ÒË®ºÓº°ÒËãÓºm°Ë²}ºº¯ÒÓÈÓ©²¹ãº°}º°Ë®
¯ÒãºÎËÓÒË
vmº®°ˆmȹºm˯²Óº°ˆË®mˆº¯ºº¹º¯«}È



       ÒÓÈ ¹Ë¯Ëä˝Èˈ°« mºã  ¯‚º® ¹È¯È­ºã© º°  }ºˆº¯º® ¹È¯ÈããËã ÓÈ º°Ò ¹Ë¯mº®
     ¹È¯È­ºã© È mˈmÒ Óȹ¯ÈmãËÓ© ¹¯ºˆÒmº¹ºãºÎÓº ¹¯ÒËä Ò² ¹ãº°}º°ˆÒ mÏÈÒäÓº
     ¹Ë¯¹ËÓÒ}‚㫯ө
         
         
°€Ò¹Ë¯­ºãÒ˰}Ò®¹È¯È­ºãºÒÒäËˈmȰËäË®°ˆmÈwé¹uvsqtnpt€}viéjoyíq}
         
         
                                                              x y x y
      p°ãÒÏȹҰȈ ‚¯ÈmÓËÓÒËÈÓÓº®¹ºm˯²Óº°ˆÒmmÒË (     + )( − ) =2 z ˆºäºÎÓº
                                                              a b a b
      ¹¯Ò®ˆÒ } ÏÈ}ã ËÓÒ  ˆº ¹¯Ò ã ­©² ÏÓÈËÓÒ«² ¹È¯Èäˈ¯È α ˆº}Ò ãËÎȝÒË ÓÈ
                x y              x y
                a + b = 2α       a − b = 2α
      ¹¯«ä©²               Ò              ˆÈ}ÎË ¹¯ÒÓÈãËÎȈ Ò ҹ˯­ºãÒ˰}ºä‚
                    x y              x y
               α ( − ) = z      α ( + ) = z
                a b              a b
      ¹È¯È­ºãºÒ‚¹º°}ºã }‚¹ºãËÓӺ˹˯ËäÓºÎËÓÒË‚¯ÈmÓËÓÒ®¹ãº°}º°ˆË®ÏÈÈ Ò²
      ªˆÒ¹¯«ä©ËÈˈ‚¯ÈmÓËÓÒËҹ˯­ºãÒ˰}ºº¹È¯È­ºãºÒÈ
          
      ~ÈäˈÒä ˆº ã« }Èκ® ˆº}Ò ҹ˯­ºãÒ˰}ºº ¹È¯È­ºãºÒÈ °‚Ë°ˆm‚ˈ wjéj
      wé¹u€}¹¯º²º«Ò²˯ËϪˆ‚ˆº}‚ÒËãÒ}ºäãËÎȝҲÓÈҹ˯­ºãÒ˰}ºä¹È
      ¯È­ºãºÒː¯ÈmÓËÓÒ«ªˆÒ²¹¯«ä©²äº‚ˆ­©ˆ ¹ºã‚ËÓ© °ˆºÓº°ˆ ºÓË}ºˆº
      ¯ººº­ËºÓËӂãËmººäÓºÎ҈Ëã« ¹‚ˆË乺­º¯È}ºÓ}¯ËˆÓ©²ÏÓÈËÓÒ®¹È¯Èäˈ¯È
      α
          
          
          
          
¯|Óº¹ºãº°ˆÓ©®ҹ˯­ºãºÒ
      
             
             
    |¹¯ËËãËÓÒË         ºm˯²Óº°ˆ ÏÈÈmÈËäÈ«mÓË}ºˆº¯º®º¯ˆºÓº¯äÒ¯ºmÈÓÓº®°Ò°ˆËäË}º
    ¯           º¯ÒÓȈ          }ÈÓºÓÒ˰}Òä           ‚¯ÈmÓËÓÒËä         mÒÈ
                           x2       y2       z2
                                +        −        = 1 ; a > 0, b > 0, c > 0  ÓÈÏ©mÈˈ°« vltvwvsvxzt€u mq
                           a2       b2       c2
                         wnéivsvqlvu
             
             
             
vmº®°ˆmȺӺ¹ºãº°ˆÓººҹ˯­ºãºÒÈ
        
        
° |Óº¹ºãº°ˆÓ©® ҹ˯­ºãºÒ  Ó˺¯ÈÓÒËÓÓÈ« ¹ºm˯²Óº°ˆ  ¹º°}ºã }‚ ÒÏ Ëº
}ÈÓºÓÒ˰}ºº‚¯ÈmÓËÓÒ«°ãË‚ˈˆº z ∈ ( −∞,+∞) 
        
° |Óº¹ºãº°ˆÓ©®ҹ˯­ºãºÒº­ãÈÈˈ
      Ëӈ¯Èã Óº®°Òääˈ¯ÒË®ºˆÓº°ÒˆËã ÓºÓÈÈãÈ}ºº¯ÒÓȈ
      º°Ëmº®°Òääˈ¯ÒË®ºˆÓº°ÒˆËã Óºm°Ë²}ºº¯ÒÓȈө²º°Ë®
      ¹ãº°}º°ˆÓº®°Òääˈ¯ÒË®ºˆÓº°ÒˆËã Óºm°Ë²}ºº¯ÒÓȈө²¹ãº°}º°ˆË®