Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 318 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
°{°ËËÓÒÒ ºÓº¹ºãº°Óººҹ˯ºãºÒÈ¹ãº°}º°º¯ººÓÈãÓº®º°Ò}ºº¯ÒÓÈ
Oz
¹ºãÈË°«ëssqwxÈ¹ãº°}º°«äÒº¯ººÓÈãÓ©äÒº°«ä
Ox
ÒãÒ
Oy
mqwné
ivsjcÒ° ¯{©mº¯ÈmÓËÓÒ®ã«ãÒÓÒ®°ËËÓÒ«ÈÓÈãºÒËÓ¯È°°äº¯ËÓ
Ó©ä¯ÈÓËË°ãÈ«ä
°|Óº¹ºãº°Ó©® ҹ˯ºãºÒ ÒäËË mÈ °ËäË®°mÈ ¹¯«äºãÒÓˮө² º¯ÈÏÒ²
~ȹҰÈm¯ÈmÓËÓÒËÈÓÓº®¹ºm˯²Óº°ÒmmÒË
2
2
1))((
b
y
c
z
a
x
c
z
a
x
=+
äºÎÓº¹¯Ò®Ò
}ÏÈ}ãËÓÒº¹¯Òã©²
α
Ò
β

αβ
+>
0
º}ÒãËÎÈÒËÓÈ¹¯«ä©²

+=
=+
)1()(
)1()(
b
y
c
z
a
x
b
y
c
z
a
x
αβ
βα
Ò
=
+=+
)1()(
)1()(
b
y
c
z
a
x
b
y
c
z
a
x
αβ
βα

¹¯ÒÓÈãËÎÈÒºÓº¹º
㺰Óºä ҹ˯ºãºÒ ¹º
°}ºã} ¹ºãËÓÓºË ¹Ë¯Ë
äÓºÎËÓÒË ¯ÈmÓËÓÒ® ¹ãº°}º
°Ë® ÏÈÈÒ² ªÒ ¹¯«ä©Ë
ÈË ¯ÈmÓËÓÒË ºÓº¹ºãº°Óºº
ҹ˯ºãºÒÈ
iã«}Èκ®º}ÒºÓº¹ºãº°
Óºº ҹ˯ºãºÒÈ °˰mË
wjéjwé¹u}¹¯º²º«Ò²˯ËÏ
ª º} Ò ËãÒ}ºä ãËÎÈÒ²
ÓÈ ºÓº¹ºãº°Óºäҹ˯ºãºÒ
Ë ¯ÈmÓËÓÒ« ªÒ² ¹¯«ä©²
äº ©¹ºãËÓ© ¹Ëä
¹ºº¯È }ºÓ}¯ËÓ©² ÏÓÈËÓÒ®
α
Ò
β


x

z
èqxytvr¯
y
¯im¹ºãº°Ó©®ҹ˯ºãºÒ
|¹¯ËËãËÓÒË
¯
ºm˯²Óº° ÏÈÈmÈËäÈ«mÓË}ºº¯º®º¯ºÓº¯äÒ¯ºmÈÓÓº®°Ò°ËäË}º
º¯ÒÓÈ }ÈÓºÓÒ˰}Òä ¯ÈmÓËÓÒËä È
;1
2
2
2
2
2
2
=
c
z
b
y
a
x
0,0,0
>>> cba
ÓÈÏ©mÈË°«lkywvsvxztumqwnéivsvqlvu
 Ë }  Ò Ò   } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



°{ °ËËÓÒÒ ºÓº¹ºãº°ˆÓºº ҹ˯­ºãºÒÈ ¹ãº°}º°ˆ º¯ˆººÓÈã Óº®º°Ò}ºº¯ÒÓȈ
     Oz  ¹ºã‚Èˈ°«ëssqwxȹ㺰}º°ˆ«äÒº¯ˆººÓÈã Ó©äÒº°«ä Ox  ÒãÒ Oy mqwné
     ivsj cÒ°¯ {©mº‚¯ÈmÓËÓÒ®ã«ãÒÓÒ®°ËËÓÒ«ÈÓÈãºÒËӯȰ°äºˆ¯ËÓ
     Ó©ä¯ÈÓË˰ã‚È«ä
          
°|Óº¹ºãº°ˆÓ©® ҹ˯­ºãºÒ ÒäËˈ mÈ °ËäË®°ˆmÈ ¹¯«äºãÒÓˮө² º­¯Èς Ò²
                                                                                     x z x z       y2
      ~ȹҰÈm‚¯ÈmÓËÓÒËÈÓÓº®¹ºm˯²Óº°ˆÒmmÒË (                                  + )( − ) = 1− 2 äºÎÓº¹¯Ò®ˆÒ
                                                                                     a c a c       b
      }ÏÈ}ã ËÓÒ ˆº¹¯Òã ­©²αÒβ α + β > 0 ˆº}ÒãËÎȝÒËÓȹ¯«ä©²
                                x z                         y      x z                          y
                               α ( a + c ) = β (1 −           )    α ( + ) = β (1 +
                                                             b Ò  a c
                                                                                                    )
                                                                                                  b 
                                                 x z
                                    x z                      y                                    y
                                β ( − ) = α (1 +              )    β ( − ) = α (1 −               )
                                a c                         b      a c                          b
                                                                     z                                     
                                                                                                                                         
      ­‚‚ˆ¹¯ÒÓÈãËÎȈ ÒºÓº¹º                                                                                                        
      㺰ˆÓºä‚ ҹ˯­ºãºÒ‚ ¹º                                                                                                        
      °}ºã }‚    ¹ºãËÓÓºË    ¹Ë¯Ë
                                                                                                                                          
      äÓºÎËÓÒË ‚¯ÈmÓËÓÒ® ¹ãº°}º
      °ˆË® ÏÈÈ Ò² ªˆÒ ¹¯«ä©Ë                                                                                                      
      Èˈ ‚¯ÈmÓËÓÒË ºÓº¹ºãº°ˆÓºº                                                                                                    
      ҹ˯­ºãºÒÈ                                                                                                                      
                                                                                                                                         
      iã«}Èκ®ˆº}ÒºÓº¹ºãº°ˆ                                                                                                        
      Óºº ҹ˯­ºãºÒÈ °‚Ë°ˆm‚ˈ                                                                                                     
      wjéjwé¹u€}¹¯º²º«Ò²˯ËÏ                                                                                                      
      ªˆ‚ ˆº}‚ Ò ËãÒ}ºä ãËÎȝҲ                                                                                                    
      ÓȺӺ¹ºãº°ˆÓºäҹ˯­ºãºÒ                                                                                                        y
      Ë ¯ÈmÓËÓÒ« ªˆÒ² ¹¯«ä©²                          
      亂ˆ ­©ˆ  ¹ºã‚ËÓ© ¹‚ˆËä
      ¹º­º¯È }ºÓ}¯ËˆÓ©² ÏÓÈËÓÒ®                         x
      αÒβ
                                                                                                                                      
                                                                                                 
                                                                                         èqxytvr¯
            
            
            
            
¯im‚¹ºãº°ˆÓ©®ҹ˯­ºãºÒ
            
            
            

 |¹¯ËËãËÓÒË           ºm˯²Óº°ˆ ÏÈÈmÈËäÈ«mÓË}ºˆº¯º®º¯ˆºÓº¯äÒ¯ºmÈÓÓº®°Ò°ˆËäË}º
 ¯
                                                                                                                    x2       y2       z2
                        º¯ÒÓȈ            }ÈÓºÓÒ˰}Òä                 ‚¯ÈmÓËÓÒËä               mÒÈ                −        −        = 1;
                                                                                                                    a2       b2       c2
                         a > 0 , b > 0 , c > 0 ÓÈÏ©mÈˈ°«lkywvsvxzt€umqwnéivsvqlvu