Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 320 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
|¹¯ËËãËÓÒË
¯
vºmº}¹Óº°ºË} }ºº¯ÒÓÈ© }ºº¯©² ºmãËmº¯« ¯ÈmÓËÓÒ
0),(
22
=+±
zyxF
ÓÈÏ©mÈË°«wvkné}tvxzíkéjntq¹
¯Òä˯
¯
z¹ºm˯²Óº°«äm¯ÈËÓÒ«Óȹ¯Òä˯ºÓº°«°«
°wããÒ¹°ºÒm¯ÈËÓÒ«
1
2
2
2
22
=+
+
c
z
a
yx

°zºÓ°m¯ÈËÓÒ«
2222
yxzk
+=

~ÈäËÈÓÒË
¹ºm˯²Óº°Òm¯ÈËÓÒ«ãÒÓÒÒmº¯ºº¹º¯«}ÈÓËm°ËÈÏÈÈ°«¯ÈmÓË
ÓÒ«äÒmº¯ºº¹º¯«}È
sȹ¯Òä˯ ˰ãÒ m¯ÈÈ }mȯÈÓ ¹È¯Èºã
pxz 2
2
=
mº}¯ º°Ò
Ox

¹ºãÈË°« ªããÒ¹Ò˰}Ò®¹È¯ÈºãºÒm¯ÈËÓÒ«ºÓÈ}º¹¯Òm¯ÈËÓÒÒªº®
ÎË }¯Òmº® mº}¯ º°Ò
Oz
¹ºãÒ°« ¹ºm˯²Óº° m¯ÈËÓÒ« ÏÈÈmÈËäÈ«
¯ÈmÓËÓÒËämÒÈ
222
2
yxpz +±=
ÒãÒ
)(4
2224
yxpz +=

ÈÈ
¯
vº°ÈmÒ ¯ÈmÓËÓÒË ¹ºm˯²Óº°Ò m¯ÈËÓÒ« ¹ºãÈË亮 ¹¯Ò m¯ÈË
ÓÒÒãÒÓÒÒ
pxz
2
2
=
mº}¯º°Ò
Ox

ËÓÒË
~ÈÁÒ}°Ò¯Ëä ÓÈ m¯ÈÈË亮 ãÒÓÒÒ º}°}ºº¯ÒÓÈÈäÒ
x
z
0
0
0
 ÒÓÒ«
¹ºãÈËäÈ«¹¯Òm¯ÈËÓÒÒªº®º}Òmº}¯º°Ò
Ox
m¹ãº°}º°Ò
xx=
0

˰º}¯ÎÓº°¯ÈÒ°È
z
0
°¯ÈmÓËÓÒËä
2
0
22
zzy =+

v ¯º® °º¯ºÓ©
0
2
0
2
pxz =
 ¹ºªºä
0
22
2
pxzy =+
 sÈ}ºÓË m °Òã
¹¯ºÒÏmºãÓº°Ò º}Ò
x
z
0
0
0
 m©¯ÈÓÓº® ÓÈ ãÒÓÒÒ m¯ÈËÓÒ« ¹ºãÈËä
º ¯ÈmÓËÓÒË ¹ºm˯²Óº°Ò m¯ÈËÓÒ«  ªããÒ¹Ò˰}ºº ¹È¯ÈºãºÒÈ
˰
pxzy
2
22
=+

 Ë }  Ò Ò   } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



  |¹¯ËËãËÓÒË      vºmº}‚¹Óº°ˆ  ˆºË} }ºº¯ÒÓȈ© }ºˆº¯©² ‚ºmãˈmº¯« ˆ ‚¯ÈmÓËÓÒ 
  ¯
                     F (± x 2 + y 2 , z ) = 0 ÓÈÏ©mÈˈ°«wvkné}tvxzíkéjntq¹
          
          
          
  ¯Òä˯           z¹ºm˯²Óº°ˆ«äm¯ÈËÓÒ«Óȹ¯Òä˯ºˆÓº°«ˆ°«
  ¯        
                               °wããÒ¹°ºÒm¯ÈËÓÒ«
                                                                              x2 + y2         z2
                                                                                          +        = 1 
                                                                                 a2           c2
                                     
                                     °zºÓ‚°m¯ÈËÓÒ«
                                                                              k 2 z 2 = x 2 + y 2 
                         
            
            
            
~ÈäËÈÓÒ˹ºm˯²Óº°ˆÒm¯ÈËÓÒ«ãÒÓÒÒmˆº¯ºº¹º¯«}ÈÓËm°ËÈÏÈÈ ˆ°«‚¯ÈmÓË
                   ÓÒ«äÒmˆº¯ºº¹º¯«}È
            
                   sȹ¯Òä˯ ˰ãÒ m¯ÈÈˆ  }mȯȈӂ  ¹È¯È­ºã‚ z 2 = 2 px  mº}¯‚ º°Ò Ox 
                   ¹ºã‚Èˈ°«ªããÒ¹ˆÒ˰}Ò®¹È¯È­ºãºÒm¯ÈËÓÒ«ºÓÈ}º¹¯Òm¯ÈËÓÒÒªˆº®
                   ÎË }¯Òmº® mº}¯‚ º°Ò Oz  ¹ºã‚҈°« ¹ºm˯²Óº°ˆ  m¯ÈËÓÒ« ÏÈÈmÈËäÈ«
                   ‚¯ÈmÓËÓÒËämÒÈ z 2 = ±2 p x 2 + y 2 ÒãÒ z 4 = 4 p 2 ( x 2 + y 2 ) 
            
            
            
 ~ÈÈÈ                 vº°ˆÈm҈  ‚¯ÈmÓËÓÒË ¹ºm˯²Óº°ˆÒ m¯ÈËÓÒ« ¹ºã‚ÈË亮 ¹¯Ò m¯ÈË
 ¯
                         ÓÒÒãÒÓÒÒ z 2 = 2 px mº}¯‚º°Ò Ox 
            
                                                                                                                             x0
cËËÓÒË             ~ÈÁÒ}°Ò¯‚Ëä ÓÈ m¯ÈÈË亮 ãÒÓÒÒ ˆº}‚ ° }ºº¯ÒÓȈÈäÒ0  ÒÓÒ«
                                                                                 z0
                       ¹ºã‚ÈËäÈ«¹¯Òm¯ÈËÓÒÒªˆº®ˆº}Òmº}¯‚º°Ò Ox m¹ãº°}º°ˆÒ x = x 0 
                       ˰ˆ º}¯‚ÎÓº°ˆ ¯È҂°È z 0 °‚¯ÈmÓËÓÒËä y 2 + z 2 = z02 
                       
                       v ¯‚º® °ˆº¯ºÓ© z 02 = 2 px0  ¹ºªˆºä‚ y 2 + z 2 = 2 px0  sÈ}ºÓË m °Òã‚
                                                                x0
                       ¹¯ºÒÏmºã Óº°ˆÒ ˆº}Ò                   0  m©­¯ÈÓÓº® ÓÈ ãÒÓÒÒ m¯ÈËÓÒ« ¹ºã‚ÈËä
                                                                z0
                       ˆº ‚¯ÈmÓËÓÒË ¹ºm˯²Óº°ˆÒ m¯ÈËÓÒ«  ªããÒ¹ˆÒ˰}ºº ¹È¯È­ºãºÒÈ
                       ˰ˆ  y 2 + z 2 = 2 px