Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 322 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
~ÈäËÈÓÒ«
° |¹Ë¯ÈÒ« äÓºÎËÓÒ« }ºä¹ãË}°Ó©² Ò°Ëã }ºääÈÒmÓÈ Ò ºãÈÈË
¯È°¹¯ËËãÒËãÓ©ä °mº®°mºä ºÓº°ÒËãÓº º¹Ë¯ÈÒÒ °ãºÎËÓÒ« º
°ãËËÓ˹º°¯Ë°mËÓÓºÒÏËËº¹¯ËËãËÓÒ«
°|¹Ë¯ÈÒ« äÓºÎËÓÒ« }ºä¹ãË}°Ó©² Ò°Ëã ¹ºÏmºã«Ë mm˰Ò º¹Ë¯ÈÒ
lnsntq¹ ȰÓ©ä º ËãËÓÒ« }ºä¹ãË}°Óºº Ò°ãÈ
1
z
ÓÈ ÓËÓãËmºË
2
z
ÓÈÏ©mÈË°«}ºä¹ãË}°ÓºËÒ°ãº
z
È}ºËº
=
zzz
21

°sË¯Óº ËÒ°« º ¹ºäÓºÎ˰mº }ºä¹ãË}°Ó©² Ò°Ëã È
α
0

Ë
α
 ¹¯ºÒÏmºãÓºË mË˰mËÓÓºË Ò°ãº m °Òã º¹¯ËËãËÓÒ«
¯ ºãÈÈË m°ËäÒ °mº®°mÈäÒ mË˰mËÓÓ©² Ò°Ëã Ò ¹ººä
äºÎÓº ºmº¯Ò º mË˰mËÓÓ©Ë Ò°ãÈ ˰¹ºäÓºÎ˰mº }ºä
¹ãË}°Ó©²Ò°Ëã
sÈ ¹¯È}Ò}Ë ºãËË ¹º¯ËÒËãÓÈ °¹ËÒÈãÓÈ« ¹¯ºËÓÓÈ« Áº¯äÈ ÏȹҰÒ
}ºä¹ãË}°Ó©²Ò°Ëãm¹¯Ë°ÈmãËÓÒÒ
21
1
0
0
1
ggz
βαβα
+=+=
°Òämºã
g
1
º¹°}ÈË°«
}È}©ÏÈäËÓ«Ë°«ÓËÏȹҰ©mÈËä©ä«mÓºäÓºÎÒËãËäÙËÒÓÒȵÈ°Òämºã
g
2
ÏÈäË
Ó«Ë°«°Òämºãºä
L
ÓÈÏ©mÈËä©äÒÓºÈÙutquvpnlqtq|npµºÈ¹¯ºÒÏmºãÓºË}ºä
¹ãË}°ÓºËÒ°ãº
]
¹¯Ë°ÈmÒäº}È}
zi=+
αβ
ÈÏȹҰÒº¹Ë¯ÈÒ®°}ºä¹ãË}°Ó©äÒÒ°
ãÈäÒ¹¯ÒÓÒäÈ°ãËÒ®mÒ
zz i i i
zi i
zz i i i
12 11 2 2 1 2 12
12 1 1 2 2 12 12 12 21
+= + + + = + + +
=+= +
=+ + = + +
()( )()();
()()();
()( )( )( ).
αβ αβ αα ββ
λλαβ λα λβ
αβαβ ααββ αβαβ
iÈÓÓÈ«Áº¯äÈÏȹҰÒºÓÈËäº°}ºä¹ãË}°Ó©äÒÒ°ãÈäÒäºÎÓºº¹Ë¯Ò
¯ºmÈ}È}°º©Ó©äÒÈãË¯ÈÒ˰}ÒäÒm ãËÓÈäÒ˰ãÒ¹¯ÒÓÒäÈmºmÓÒäÈÓÒËº
i
2
1
=−
¹º°}ºã}
10)1(
0
1
1
0
1
0
)10)(10(
2
=+=
==++== iiiiii

ºÈ¹Ë¯ËäÓºÎÈ«}ºä¹ãË}°Ó©ËÒ°ãÈ}È}mãËÓ© Ò ÏÈäËÓ««¹ºm°
2
i
ÓÈ
Ò°ãºä©Áº¯äÈãÓº¹¯Ò²ºÒä}°ººÓºËÓÒ
iiiiiizz )()())((
12212121
2
2112121221121
βαβαββααβββαβαααβαβα
++=+++=++=

}ºº¯ºË°ºãȰË°«°mmËËÓÓ©äm©Ëº¹¯ËËãËÓÒËä¯
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



~ÈäËÈÓÒ«° |¹Ë¯ÈÒ« ‚äÓºÎËÓÒ« }ºä¹ãË}°Ó©² Ò°Ëã }ºä䂈ȈÒmÓÈ Ò º­ãÈÈˈ
                     ¯È°¹¯ËËã҈Ëã Ó©ä °mº®°ˆmºä ºˆÓº°ÒˆËã Óº º¹Ë¯ÈÒÒ °ãºÎËÓÒ« ˆº
                     °ãË‚ˈÓ˹º°¯Ë°ˆmËÓÓºÒÏË˺¹¯ËËãËÓÒ«

               °|¹Ë¯ÈÒ« ‚äÓºÎËÓÒ« }ºä¹ãË}°Ó©² Ò°Ëã ¹ºÏmºã«Ëˆ mm˰ˆÒ º¹Ë¯ÈÒ 
                     lnsntq¹ ȰˆÓ©ä ºˆ ËãËÓÒ« }ºä¹ãË}°Óºº Ò°ãÈ z1  ÓÈ ÓËӂãËmºË z 2 
                         ÓÈÏ©mÈˈ°«}ºä¹ãË}°ÓºËҰ㺠z ∗ ˆÈ}ºËˆº z1 = z 2 z ∗ 
                                                                                                                                           α
                   °sˈ¯‚Óº ‚­Ë҈ °« ˆº ¹ºäÓºÎ˰ˆmº }ºä¹ãË}°Ó©² Ò°Ëã mÒÈ                                                   
                                                                                                                                           0
                         Ë α  ¹¯ºÒÏmºã ÓºË m˝˰ˆmËÓÓºË Ò°ãº m °Òã‚ º¹¯ËËãËÓÒ«
                         ¯ º­ãÈÈˈ m°ËäÒ °mº®°ˆmÈäÒ m˝˰ˆmËÓÓ©² Ò°Ëã Ò ¹ºˆºä‚
                         äºÎÓº ºmº¯Òˆ  ˆº m˝˰ˆmËÓÓ©Ë Ò°ãÈ ˰ˆ  ¹ºäÓºÎ˰ˆmº }ºä
                         ¹ãË}°Ó©²Ò°Ëã
          
          
              sÈ ¹¯È}ˆÒ}Ë ­ºãËË ‚¹ºˆ¯Ë­ÒˆËã ÓÈ °¹ËÒÈã ÓÈ« ‚¹¯ºËÓÓÈ« Áº¯äÈ ÏȹҰÒ
                                              1       0
}ºä¹ãË}°Ó©²Ò°Ëãm¹¯Ë°ˆÈmãËÓÒÒ z = α         +β    = α g1 + β g 2 °Òämºã g1 º¹‚°}Èˈ°«
                                              0       1
 }È}­©ÏÈäËӫˈ°«ÓËÏȹҰ©mÈËä©ä«mÓºäÓºÎ҈ËãËäÙËÒÓÒȵ ȰÒämºã g 2 ÏÈäË
ӫˈ°«°Òämºãºä L ÓÈÏ©mÈËä©äÒÓºÈÙutquvpnlqtq|npµ ‘ºÈ¹¯ºÒÏmºã ÓºË}ºä
¹ãË}°ÓºËҰ㺠]¹¯Ë°ˆÈmÒäº}È} z = α + β i ÈÏȹҰÒº¹Ë¯ÈÒ®°}ºä¹ãË}°Ó©äÒÒ°
ãÈäÒ¹¯ÒÓÒäÈ ˆ°ãË‚ Ò®mÒ
       
       
                       z1 + z 2 = (α1 + β1i ) + (α 2 + β2 i ) = (α1 + α 2 ) + ( β1 + β2 )i                   ;

                             λ z = λ (α + βi ) = ( λ α ) + ( λ β )i ;                                                       


                             z1 z 2 = (α1 + β1i )(α 2 + β2 i ) = (α1α 2 − β1 β2 ) + (α1 β2 + α 2 β1 )i                  .
       
       
       iÈÓÓÈ«Áº¯äÈÏȹҰÒ‚º­ÓȈË䈺°}ºä¹ãË}°Ó©äÒÒ°ãÈäÒäºÎÓºº¹Ë¯Ò
¯ºmȈ }È}°º­©Ó©äÒÈãË­¯ÈÒ˰}ÒäÒm‚ãËÓÈäÒ˰ãÒ¹¯ÒÓÒäȈ mºmÓÒäÈÓÒˈº
i 2 = −1 ¹º°}ºã }‚
              
                                                                          0     0   −1
                                     i 2 = ii = (0 + 1i )(0 + 1i ) =              =    = (−1) + 0i = −1
                                                                          1     1    0
              
       ‘ºÈ ¹Ë¯ËäÓºÎÈ« }ºä¹ãË}°Ó©Ë Ò°ãÈ }È} m‚ãËÓ© Ò ÏÈäËÓ«« ¹ºm° ‚ i 2  ÓÈ
Ұ㺠 ä©Áº¯äÈã Óº¹¯Ò²ºÒä}°ººˆÓº ËÓÒ 
       
     z1 z 2 = (α1 + β1i )(α 2 + β 2i ) = α1α 2 + α1β i + α 2 β1i + β1β 2i 2 = (α1α 2 − β1β 2 ) + (α1β 2 + α 2 β1 )i 
       
}ºˆº¯ºË°ºãȰ‚ˈ°«°mmËËÓÓ©äm© ˺¹¯ËËãËÓÒË䁯