Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 323 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


zºä¹ãË}°Ó©ËÒ°ãÈ
kÓÈãºÒÓºº°ÈºÓº¹¯º°ºäºÎËm©¹ºãÓ«°«Òº¹Ë¯ÈÒ«ËãËÓÒ«
=
+
++
=
+
+
=
+
+
=
2
2
2
2
21122121
2222
2211
22
11
2
1
)()(
))((
))((
βα
βαβαββαα
βαβα
βαβα
βα
βα
i
ii
ii
i
i
z
z

i
2
2
2
2
2112
2
2
2
2
2121
βα
βαβα
βα
ββαα
+
+
+
+
=

|¹¯ËËãËÓÒË
¯
iã«}ºä¹ãË}°ÓººÒ°ãÈ
iz
βα
+=

°
{Ë˰mËÓÓºË Ò°ãº
α
ÓÈÏ©mÈË°« knnxzknttvp ·jxzí
]
Ò
ººÏÓÈÈË°«
zRe
°{Ë˰mËÓÓºË Ò°ãº
β
ÓÈÏ©mÈË°« utquvp ·jxzí
]
Ò
ººÏÓÈÈË°«
zIm

°{Ë˰mËÓÓºË Ò°ãº
22
βα
ρ
+=
ÓÈÏ©mÈË°« uvlysnu
]
Ò
ººÏÓÈÈË°«
z

°{Ë˰mËÓÓºË Ò°ãº
ϕ
È}ºËº
22
cos
βα
α
ϕ
+
=
Ò
,sin
22
βα
β
ϕ
+
=
ÓÈÏ©mÈË°« jémyuntzvu
]
Ò ººÏÓÈÈË°«
z
arg
¹¯Ò°ãºmÒÒº
z
0

°
zºä¹ãË}°ÓºË Ò°ãº
αβ
i
ÓÈÏ©mÈË°« rvuwsnrxtv xvwé¹nt
tuÒ°ã]ÒººÏÓÈÈË°«
z

~ÈäËÈÓÒ«
° |¹¯ËËãËÓÒ«ÈÓÈãºÒÓ©Ë ¹Ó}Èä°°Ò°äº©°ËãÈÓ©Òã«
äÈ¯ÒªãËäËÓÈäÒ}ºº¯©²«mã«°«}ºä¹ãË}°Ó©ËÒ°ãÈ
°º°}ºã} °˰mË mÏÈÒäÓº ºÓºÏÓÈÓºË °ººmË°mÒË äÓºÎ˰mÈ
¯ÈÒ°mË}º¯ºm ÓÈ ¹ãº°}º°Ò Ò äÓºÎ˰mÈ }ºä¹ãË}°Ó©² Ò°Ëã º
}ºä¹ãË}°Ó©ËÒ°ãÈäºÎÓºÒϺ¯ÈÎÈº}ÈäÒÓÈ¹ãº°}º°Ò
vmº®°mÈ}ºä¹ãË}°Óºº°º¹¯«ÎËÓÒ« 
jäËä˰º°ãËÒËãË}º¹¯ºm˯«Ëä©Ë°mº®°mÈã«ã©²
21
,,
zzz

°

zz =
)(

¯ÒãºÎËÓÒË
zºä¹ãË}°Ó©ËÒ°ãÈ



              kÓÈãºÒÓºº°ˆÈˆºÓº¹¯º°ˆºäºÎˈm©¹ºãÓ«ˆ °«Òº¹Ë¯ÈÒ«ËãËÓÒ«
              
                  z1 α1 + β1i     (α + β1i )(α 2 − β 2i ) (α1α 2 + β1β 2 ) + (α 2 β1 − α1β 2 )i
                     =          = 1                         =                                   =
                  z 2 α 2 + β 2i (α 2 + β 2i )(α 2 − β 2i )           α 22 + β 22

                     α α + β1 β 2 α 2 β1 − α 1 β 2
 = 1 22        +                i 
                       α 2 + β 22   α 22 + β 22


                         

    |¹¯ËËãËÓÒË         iã«}ºä¹ãË}°ÓººÒ°ãÈ z = α + β i 
    ¯
                         
                              °{˝˰ˆmËÓÓºË Ò°ãº α ÓÈÏ©mÈˈ°« knnxzknttvp ·jxzí ] Ò
                                   º­ºÏÓÈÈˈ°« Re z 
                              
                              °{˝˰ˆmËÓÓºË Ò°ãº β ÓÈÏ©mÈˈ°« utquvp ·jxzí ] Ò
                                   º­ºÏÓÈÈˈ°« Im z 
                              
                                  °{˝˰ˆmËÓÓºË Ò°ãº ρ = α 2 + β 2  ÓÈÏ©mÈˈ°« uvlysnu ] Ò
                                         º­ºÏÓÈÈˈ°« z 
                                                                                                                                 α
                                  °{˝˰ˆmËÓÓºË Ò°ãº ϕ ˆÈ}ºË ˆº cos ϕ =                                                          Ò
                                                                                                                             α +β
                                                                                                                                2       2

                                                           β
                                         sin ϕ =                    ,  ÓÈÏ©mÈˈ°« jémyuntzvu ] Ò º­ºÏÓÈÈˈ°«
                                                       α2 + β2
                                       arg z ¹¯Ò‚°ãºmÒÒˆº z ≠ 0 
                                  
                                  °zºä¹ãË}°ÓºË Ұ㺠α − β i  ÓÈÏ©mÈˈ°« rvuwsnrxtv xvwé¹ nt
                                       t€uÒ°ã‚]Òº­ºÏÓÈÈˈ°« z 
          
          
~ÈäËÈÓÒ«° |¹¯ËËãËÓÒ«ÈÓÈãºÒө˹‚Ó}ˆÈ䰰Ұ亂ˆ­©ˆ °ËãÈÓ©Òã«
                        äȈ¯ÒªãËäËӈÈäÒ}ºˆº¯©²«mã« ˆ°«}ºä¹ãË}°Ó©ËÒ°ãÈ
                   
                   °º°}ºã }‚ °‚Ë°ˆm‚ˈ mÏÈÒäÓº ºÓºÏÓÈÓºË °ººˆmˈ°ˆmÒË äÓºÎ˰ˆmÈ
                        ¯È҂°mË}ˆº¯ºm ÓÈ ¹ãº°}º°ˆÒ Ò äÓºÎ˰ˆmÈ }ºä¹ãË}°Ó©² Ò°Ëã ˆº
                        }ºä¹ãË}°Ó©ËÒ°ãÈäºÎÓºÒϺ­¯ÈÎȈ ˆº}ÈäÒÓȹ㺰}º°ˆÒ
                   
                   
                   
vmº®°ˆmÈ}ºä¹ãË}°Óºº°º¹¯«ÎËÓÒ«
              
              
          jäË ˆä˰ˆº°ãË‚ ÒËãË}º¹¯ºm˯«Ëä©Ë°mº®°ˆmÈã«ã ­©² z , z1 , z 2 ∈ Ω 
          


                       ° ( z ) = z