Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 321 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


zºä¹ãË}°Ó©ËÒ°ãÈ
¯ÒãºÎËÓÒË
z|lpzvshpjvk
cȰ°äº¯Òämä˯ӺËãÒÓˮӺË¹¯º°¯ÈÓ°mº
ÒϺ亯ÁÓºË
ãÒÓˮӺä¹¯º
°¯ÈÓ°m¯ÈÒ°mË}º¯ºmÓÈ¹ãº°}º°Ò
zÈΩ® ªãËäËÓ
]
¹¯º°¯ÈÓ°mÈ
m ÓË}ºº¯ºä ÈÏÒ°Ë ºÓºÏÓÈÓº ÏÈÈË°«
m²}ºä¹ºÓËÓÓ©ä°ºãºä
α
β
p°ãÒÏÈÈÏÒ°Ó©ËªãËäËÓ©¹¯º°¯ÈÓ°mÈ
¹¯ÒÓ«
g
1
1
0
=
Ò
1
0
2
=g
º¹¯ºÒÏmºãÓ©®ªãËäËÓ
β
α
=z
äºÎË©¹¯Ë°ÈmãËÓmË
21
1
0
0
1
ggz
βαβα
+=+=

{mËËäº¹Ë¯ÈÒyutvntq¹ªãËäËÓºm¹¯º°¯ÈÓ°mÈ
¹º°ãËËä¹¯ÈmÒ
ã
|¹¯ËËãËÓÒË
¯
cËÏãÈºä º¹Ë¯ÈÒÒ äÓºÎËÓÒ« ªãËäËÓºm
1
1
1
β
α
=z
Ò
2
2
2
β
α
=z
¹¯º°¯ÈÓ°mÈ
«mã«Ë°« ªãËäËÓ È}ÎË ªºº ¹¯º°¯ÈÓ°mÈ
1221
2121
21
βαβα
ββαα
+
=
zz

|¹¯ËËãËÓÒË
¯
imä˯ӺËãÒÓˮӺË¹¯º°¯ÈÓ°mº
°ÈÏÒ°ºä^
g
1
1
0
=

g
2
0
1
=
`m
}ºº¯ºämmËËÓÈ º¹Ë¯È Ò«äÓºÎËÓÒ«ªãËäËÓºm °º ãȰӺº¹¯ËËãËÓÒ
¯ÓÈÏ©mÈË°«äÓºÎ˰mºärvuwsnrxt}·qxns È}ÈΩ®ªãËäËÓ
] ∈Ω
rvuwsnrxtu·qxsvu

jϺ亯ÁÒÏä°ämÈÓÓºä°ãÈËºÏÓÈÈËºº¹Ë¯ÈÒÒ°ãºÎËÓÒ«ÒäÓºÎËÓÒ«ÓÈmË
˰mËÓÓºËÒ°ãºm©¹ºãÓ«°«mÈÓÓºääÓºÎ˰mËÈ}ÎË}È}Òã«mË}º¯ºmÓÈ¹ãº°}º°Ò
¯ÒãºÎËÓÒË
zºä¹ãË}°Ó©ËÒ°ãÈ



              
              
              
              
              
              
              
¯ÒãºÎËÓÒË
z|lpzvshp jvk
        
        
        
        
      cȰ°äºˆ¯Òäm‚ä˯ӺËãÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmºΩÒϺ亯ÁÓºË ãÒÓˮӺ䂹¯º
°ˆ¯ÈÓ°ˆm‚¯È҂°mË}ˆº¯ºmÓȹ㺰}º°ˆÒ
      
      zÈΩ® ªãËäËӈ ] ¹¯º°ˆ¯ÈÓ°ˆmÈ Ω m ÓË}ºˆº¯ºä ­ÈÏÒ°Ë ºÓºÏÓÈÓº ÏÈÈˈ°«
                                                   α
m‚²}ºä¹ºÓËӈөä°ˆºã­ºä                           p°ãÒÏÈ­ÈÏҰө˪ãËäËӈ©¹¯º°ˆ¯ÈÓ°ˆmÈ Ω ¹¯ÒÓ«ˆ 
                                                   β
         1            0                                   α
g1 =        Ò g 2 =    ˆº ¹¯ºÒÏmºã Ó©® ªãËäËӈ z =    äºÎˈ ­©ˆ  ¹¯Ë°ˆÈmãËÓ m mÒË
         0            1                                   β
          1    0
z =α        +β   = α g1 + β g 2 
          0    1
          
          
              {mËË亹˯ÈÒ yutv ntq¹ªãËäËӈºm¹¯º°ˆ¯ÈÓ°ˆmÈΩ¹º°ãË‚ Ë䂹¯ÈmÒ
ã‚
          
          
                                                                                                                    α1            α2
    |¹¯ËËãËÓÒË          cËς㠈Ȉºä º¹Ë¯ÈÒÒ ‚äÓºÎËÓÒ« ªãËäËӈºm z1 =                                              Ò z 2 =    
    ¯                                                                                                       β1            β2
                          ¹¯º°ˆ¯ÈÓ°ˆmÈ         Ω «mã«Ëˆ°« ªãËäËӈ ˆÈ}ÎË ªˆºº ¹¯º°ˆ¯ÈÓ°ˆmÈ
                                     α α − β1β 2
                             z1 z 2 = 1 2           
                                     α1β 2 + α 2 β1
                         
          
          
                                                                                                                      1         0
    |¹¯ËËãËÓÒË         im‚ä˯ӺËãÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmºΩ°­ÈÏÒ°ºä^ g1 =                                              g2 =   `m
    ¯                                                                                                         0         1
                         }ºˆº¯ºämmËËÓȺ¹Ë¯ÈÒ«‚äÓºÎËÓÒ«ªãËäËӈºm°ºãȰӺº¹¯ËËãËÓÒ 
                         ¯ÓÈÏ©mÈˈ°«äÓºÎ˰ˆmºärvuwsnrxt€}·qxnsÈ}ÈΩ®ªãËäËӈ
                         ] ∈Ω
                            Ωrvuwsnrxt€u·qxsvu
           

jϺ亯ÁÒÏä °ä mÈÓÓºä°ã‚È˺ÏÓÈÈˈˆºº¹Ë¯ÈÒÒ°ãºÎËÓÒ«Ò‚äÓºÎËÓÒ«ÓÈmË
Ë°ˆmËÓÓºËÒ°ãºm©¹ºãÓ« ˆ°«mÈÓÓºääÓºÎ˰ˆmˈÈ}ÎË}È}Òã«mË}ˆº¯ºmÓȹ㺰}º°ˆÒ