Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 324 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
°Ò°ãº
]
ËmË˰mËÓÓ©äºÈÒºã}ººÈ}ºÈ
zz
=

°
Ò°ãº
22
βα
+=zz
m°ËÈmË˰mËÓÓºËÒÓ˺¯ÒÈËãÓºË
°

21212121
;
zzzzzzzz =+=+

°
p°ãÒ
=
=
n
k
k
kn
zzP
0
)(
α
äÓººãËÓ ° mË˰mËÓÓ©äÒ }ºªÁÁÒÒËÓÈäÒ
ÒäËÒ® }º¯ËÓ
λ
 º ªº äÓººãËÓ È}ÎË Ë ÒäËÒ}º¯ËÓ
λ
iË®°mÒËãÓº¹°
αλ
k
k
k
n
=
=
0
0
ºÈ
==
===
n
k
k
k
n
k
k
k
00
00
λαλα

~ÈäËÈÓÒË
 ˰ãÒ ÈãË¯ÈÒ˰}ºË ¯ÈmÓËÓÒË ° mË˰mËÓÓ©äÒ }ºªÁÁÒÒËÓÈäÒ ÒäËË
}ºä¹ãË}°Ó©Ë}º¯ÓÒººÓÒ¹º¹È¯Óº°º¹¯«ÎËÓ©ÈÈãË¯ÈÒ˰}ºË¯ÈmÓË
ÓÒË°mË˰mËÓÓ©äÒ}ºªÁÁÒÒËÓÈäÒÓËËÓº®°˹ËÓÒÒäËË¹º}¯È®
ÓË®ä˯ËºÒÓmË˰mËÓÓ©®}º¯ËÓ
ÈÈ
Ëjutvnxzknrvuwsnrxt}·qxnsén¡qzyéjktntqn
01
2
=+z

¯
ËÓÒË
˯˹ÒËä ªº ¯ÈmÓËÓÒË ¹¯ÒÓ«m º
zi
=+ =
αβ
α
β
 º ˰
α
β
α
β
+=
1
0
0
0
 ~ÈäËÒä º Ï˰ ä© mº°¹ºãϺmÈãÒ° ¯ÈÏm˯Ó©äÒ
¹¯Ë°ÈmãËÓÒ«äÒÒ°Ëã
110
1
0
=+ =i
Ò
000
0
0
=+ =i

{©¹ºãÓÒmäÓºÎËÓÒËÒ°ãºÎËÓÒËm¹¯Èmº®ȰÒ¯ÈmÓËÓÒ«¹¯Ò²ºÒä}¯È
mËÓ°m
0
0
2
1
22
=
+
αβ
βα
sº¹º°}ºã}mÈ}ºä¹ãË}°Ó©²Ò°ãÈ¯ÈmÓ©ºÈÒ
ºã}ººÈÈºÓºm¯ËäËÓÓº¯ÈmÓ©Ò²mË˰mËÓÓ©ËÒäÓÒä©ËȰÒº
ä©¹ºãÈËä °ãË°Ò°ËäÓËãÒÓˮө²¯ÈmÓËÓÒ®ºÓº°ÒËãÓºmËË
°mËÓÓ©²ÓËÒÏm˰Ó©²
α
Ò
β

=
=+
02
01
22
αβ
βα

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                   ° Ò°ãº]­‚ˈm˝˰ˆmËÓө䈺ÈÒˆºã }ºˆºÈ}ºÈ z = z 

                       ° Ұ㺠z z = α 2 + β 2 m°ËÈm˝˰ˆmËÓÓºËÒÓ˺ˆ¯ÒȈËã ÓºË

                       ° z1 + z 2 = z1 + z 2          ;   z1 z 2 = z1 z 2 
                                                     n
                       °p°ãÒ Pn ( z ) =        ∑α k z k  äÓººãËÓ ° m˝˰ˆmËÓÓ©äÒ }ºªÁÁÒÒËӈÈäÒ
                                                   k =0
                             ÒäË Ò® }º¯ËÓ  λ ˆº ªˆºˆ äÓººãËÓ ˆÈ}ÎË ­‚ˈ Òäˈ  Ò }º¯ËÓ 
                                                                         n
                              λ iË®°ˆm҈Ëã Óº¹‚°ˆ  ∑ α k λ k = 0 ˆºÈ
                                                                        k =0

                                                                             n               n
                                                               0=0=       ∑α k λ k =        ∑α k λ k 
                                                                          k =0             k =0
          
          
~ÈäËÈÓÒË ˰ãÒ ÈãË­¯ÈÒ˰}ºË ‚¯ÈmÓËÓÒË ° m˝˰ˆmËÓÓ©äÒ }ºªÁÁÒÒËӈÈäÒ ÒäËˈ
                   }ºä¹ãË}°Ó©Ë}º¯ÓÒˆººÓÒ¹º¹È¯Óº°º¹¯«ÎËÓ©ÈÈãË­¯ÈÒ˰}ºË‚¯ÈmÓË
                   ÓÒ˰m˝˰ˆmËÓÓ©äÒ}ºªÁÁÒÒËӈÈäÒÓËˈӺ®°ˆË¹ËÓÒÒäËˈ¹º}¯È®
                   ÓË®ä˯˺ÒÓm˝˰ˆmËÓÓ©®}º¯ËÓ 
          
          
          
~ÈÈÈËjutv            nxzknrvuwsnrxt€}·qxnsén¡qzyéjktntqn z 2 + 1 = 0 
¯

                                                                                                                       α
cËËÓÒËË¯Ë¹Ò              Ëä     ªˆº      ‚¯ÈmÓËÓÒË            ¹¯ÒÓ«m          ˆº        z =α + βi =          ˆº ˰ˆ 
                                                                                                                       β
                 α     α   1   0
                         +   =    ~ÈäˈÒä ˆº Ï˰  ä© mº°¹ºã ϺmÈãÒ°  ¯ÈÏm˯ӂˆ©äÒ
                 β     β   0   0
                                                                         1                            0
              ¹¯Ë°ˆÈmãËÓÒ«äÒÒ°Ëã 1 = 1 + 0 i =                               Ò 0 = 0 + 0 i =        
                                                                         0                            0
              
              {©¹ºãÓÒm‚äÓºÎËÓÒËÒ°ãºÎËÓÒËm¹¯Èmº®ȰˆÒ‚¯ÈmÓËÓÒ«¹¯Ò²ºÒä}¯È
                              α 2 − β 2 +1   0
              mËÓ°ˆm‚                     =   sº¹º°}ºã }‚mÈ}ºä¹ãË}°Ó©²Ò°ãȯÈmÓ©ˆºÈÒ
                                  2αβ        0
              ˆºã }ºˆºÈ}ºÈºÓºm¯ËäËÓÓº¯ÈmÓ©Ò²m˝˰ˆmËÓÓ©ËÒäÓÒä©ËȰˆÒˆº
              䩹ºã‚ÈËä°ãË‚ ‚ °Ò°ˆËä‚ÓËãÒÓˮө²‚¯ÈmÓËÓÒ®ºˆÓº°ÒˆËã Óºm˝Ë
              °ˆmËÓÓ©²ÓËÒÏm˰ˆÓ©²αÒβ 
              
                                                                   α 2 − β 2 + 1 = 0
                                                                                      
                                                                       2αβ = 0