Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 325 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


zºä¹ãË}°Ó©ËÒ°ãÈ
}ºº¯È«}È}ãË}ºËÒäËËmÈ¯ËËÓÒ«
α
β
=
=
0
1
Ò
α
β
=
=−
0
1
ºªºäÒ°
²ºÓºË ¯ÈmÓËÓÒË È}ÎË ÒäËË mÈ ¯ËËÓÒ«
iiz =+== 10
1
0
1
Ò
iiz =+=
= )1(0
1
0
2

¯ÒºÓºäË¯Ò˰}È«Òª}°¹ºÓËÓÒÈãÓÈ«Áº¯ä©ÏȹҰÒ}ºä¹ãË}°Ó©²Ò°Ëã
j°²º« ÒÏ º¹¯ËËãËÓÒ« ¯ äºÎÓº ¹ºãÒ°¹ËÒÈãÓ Áº¯ä ÏȹҰÒ
}ºä¹ãË}°Ó©²Ò°ËãÓÈÏ©mÈËäzéqmvtvunzéq·nxrvp
)sin(cos)(
2222
22
ϕϕ
ρ
βα
β
βα
α
βαβα
iiiz +=
+
+
+
+=+=

¯ÒºÓºäË¯Ò˰}È« Áº¯äÈ ÏȹҰÒ }ºä¹ãË}°Ó©² Ò°Ëã °ººmË°mË ÏÈ ÈÓÒ
º}ÒÒϺ¯ÈÎÈË®}ºä¹ãË}°ÓºËÒ°ãºm¹ºã«¯Óº®°Ò°ËäË}ºº¯ÒÓÈ
°
 Óȹ¯Èmã«Òä ªãËäËÓºä
¹ºã«¯Óº® º°Ò °ãÎÒ ªãËäËÓ
g
1
1
0
=

 ÏÓÈËÓÒË äºã« }ºä¹
ãË}°ÓººÒ°ãÈ
z
¯ÈmÓº
ρ

¯È°°º«ÓÒ º ÓÈÈãÈ }ºº¯
ÒÓÈ º º}Ò ÒϺ¯ÈÎÈ
Ë®ÈÓÓºËÒ°ãº
 ÏÓÈËÓÒË ȯäËÓÈ
arg z
°ºm¹ÈÈË ° mËãÒÒÓº® ¹º
㫯Ӻº ãÈ
ϕ
 º°Ò©
mÈË人 ¹¯ºÒm Ȱºmº®
°¯Ëã}Ò
 zIm

β
]

ρ

L

g
2

ϕ


g
1

α

z
Re
èqxytvr¯
ºÈ °ºãȰӺ º¹¯ËËãËÓÒ ¯ }ºä¹ãË}°ÓºË Ò°ãº
zi=+
αβ
¹¯Ë°ÈmÒäº m
¯ÒºÓºäË¯Ò˰}º®Áº¯äË
zi=+
ρ
ϕϕ
(cos sin )

¯ÒãºÎËÓÒË
zºä¹ãË}°Ó©ËÒ°ãÈ



                                                                                             α = 0     α = 0
               }ºˆº¯È«}È}ãË}ºmÒˈ ÒäËˈmÈ¯Ë ËÓÒ«                                       Ò         ºªˆºä‚Ò°
                                                                                             β = 1      β = −1
                                                                                                               0
               ²ºÓºË         ‚¯ÈmÓËÓÒË            ˆÈ}ÎË           ÒäËˈ      mÈ      ¯Ë ËÓÒ« z1 =          = 0 + 1i = i  Ò
                                                                                                               1
                         0
               z2 =        = 0 + (−1)i = −i 
                        −1
          
          
          
‘¯ÒºÓºäˈ¯Ò˰}ȫҪ}°¹ºÓËÓÒÈãÓÈ«Áº¯ä©ÏȹҰÒ}ºä¹ãË}°Ó©²Ò°Ëã
          
          
        j°²º« ÒÏ º¹¯ËËãËÓÒ« ¯ äºÎÓº ¹ºã‚҈  °¹ËÒÈã ӂ  Áº¯ä‚ ÏȹҰÒ
}ºä¹ãË}°Ó©²Ò°ËãÓÈÏ©mÈËä‚ zéqmvtvunzéq·nxrvp
      
                                                                α                  β
                      z = α + βi = α 2 + β 2 (                            +                  i ) = ρ (cos ϕ + i sin ϕ ) 
                                                            α2 + β2            α2 + β2
                                                                         
          
        ‘¯ÒºÓºäˈ¯Ò˰}È« Áº¯äÈ ÏȹҰÒ }ºä¹ãË}°Ó©² Ò°Ëã °ººˆmˈ°ˆm‚ˈ ÏÈÈÓÒ 
ˆº}ÒÒϺ­¯ÈÎÈ Ë®}ºä¹ãË}°ÓºËÒ°ãºm¹ºã«¯Óº®°Ò°ˆËäË}ºº¯ÒÓȈ


                                                                 
‚°ˆ                                                              Im z 

                                                                  
       Óȹ¯Èmã« Òä         ªãËäËӈºä
          ¹ºã«¯Óº® º°Ò °ã‚Î҈ ªãËäËӈ β]
                                             
               1                             
          g1 =    
               0                             ρ
                                             
       ÏÓÈËÓÒË     亂㫠   }ºä¹
                                             L
          ãË}°ÓººÒ°ãÈ z ¯ÈmÓº ρ  g 2 ϕ
          ¯È°°ˆº«ÓÒ  ºˆ ÓÈÈãÈ }ºº¯ 
          ÒÓȈ º ˆº}Ò ÒϺ­¯ÈÎÈ   g α Re z 
                                                                                       1
          Ë®ÈÓÓºËÒ°ãº
                                             
       ÏÓÈËÓÒË ȯ‚äËӈÈ       arg z  
          °ºm¹ÈÈˈ ° mËãÒÒÓº® ¹º 
          㫯Ӻº ‚ãÈ ϕ ºˆ°҈© èqxytvr¯
          mÈË人     ¹¯ºˆÒm    Ȱºmº®
          °ˆ¯Ëã}Ò
      
ˆºÈ °ºãȰӺ º¹¯ËËãËÓÒ  ¯ }ºä¹ãË}°ÓºË Ұ㺠z = α + β i  ¹¯Ë°ˆÈmÒäº m
ˆ¯ÒºÓºäˈ¯Ò˰}º®Áº¯äË z = ρ (cos ϕ + i sin ϕ )