Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 327 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


wãËäËÓ©ËÓϺ¯ÓººÒ°Ò°ãËÓÒ«
¯ÒãºÎËÓÒË
wplpshps~|cs||jvjvpsjÐ
¯~ÈäËÈÓÒ« º º¹¯ËËãËÓÒÒ ºË}ºm m ãÒÓˮӺä ¹¯º
°¯ÈÓ°mË
{¹¯Ë©Ò²¯ÈÏËãȲ}¯°ÈãÒÓˮӺ®ÈãË¯©Ò°°ã˺mÈãÒ°ÓÈÒºãËËȰº
m°¯ËÈÒ˰« m ¹¯ÒãºÎËÓÒ«² © ºË}ºm m ãÒÓˮӺä ¹¯º°¯ÈÓ°mË È}ÒË }È}
ªãËäËÓ ãÒÓˮӺº ¹¯º°¯ÈÓ°mÈ ãÒÓˮө® ÁÓ}ÒºÓÈã ãÒÓˮө® º¹Ë¯Èº¯ ÒãÒ
Óˮө® ÁÓ}ÒºÓÈã Ò  ²º« m¹ºãÓË ºËmÒÓº º m ãÒÓˮӺä ¹¯º°¯ÈÓ°mË äº
©º¹¯ËËãËÓ©ÒÒÓ©Ë©äºÎËºãËË°ãºÎÓ©ËºË}©¹¯Ë°Èmã«ÒË¹¯È}
Ò˰}Ò®ÒÓ˯˰
|¹¯ËËãËÓÒËm°Ë²¯È°°äº¯ËÓÓ©²¯ÈÓËËºË}ºmÈmÈ㺰mÓËÏÈmÒ°Ò亰Òº
ÓÈãÒÒ«ÒãÒº°°mÒ«ÈÏÒ°ÈãÒÓˮӺº¹¯º°¯ÈÓ°mÈ¹¯ÒËäm°ãÈË°˰mºmÈÓÒ«
ÈÏÒ°È ã« }Èκº ÒÏ ºË}ºm ¹¯ÒmºÒã°« Èã˯ÓÈÒmÓ©® ¹º}ºä¹ºÓËÓÓ©® °¹º°º
˺ º¹Ò°ÈÓÒ« j ¹º°}ºã} ÏÈäËÓÈÈÏÒ°ÈäËÓ«Ë mººËºmº¯« ÈÓÓºËº¹Ò°ÈÓÒË º
°¹ËÒÈãÓºÒ°°ã˺mÈã°«mº¹¯º°º²È¯È}˯ËªººÒÏäËÓËÓÒ«
|ÓÈ}º ˰˰mËÓÓº º¹°Ò º m ãÒÓˮӺä ¹¯º°¯ÈÓ°mË
n
Λ
°˰m
ºË}© }ºº¯©Ë äºÎÓº º¹¯ËËãÒ Ò°¹ºãÏ« ãÒÏÓÈËÓÒ« Ò² }ºä¹ºÓËÓºm m
ÓË}ºº¯ºäÈÏÒ°ËÈ}º®¹º²º¹¯ÒmãË}ÈËãËÓËäº
mº¹Ë¯m©²mªºä°ãÈËÓË¯ËË°«º«°Ó«º¹¯Ë°Èmã«Ë°ºº®
ÈÓÓ©®ºË}ËϺÓº°ÒËãÓº}ÈÏÒ°
Òmºmº¯©²º¹¯ËËãËÓÒ«ºË}ºm¯ÈÏÓº®¹¯Ò¯º©äº©m©¹ºã
ÓËÓ©ËÒÓºº¯ÈÏÓº
v ¯º® °º¯ºÓ© Ó˺°È}ºä È}º® °²Ëä© «mã«Ë°« ºËmÒÓÈ« ÏÈmÒ°Ò亰
º¹Ò°ÈÓÒ«ºË}Èºm©º¯ÈÈÏÒ°Èº˰Ó˺²ºÒ亰}ÈÏ©mÈm°Èäºäº¹¯Ë
ËãËÓÒÒºË}Èº¹¯ºÒ°²ºÒ°˺}ºä¹ºÓËÓÈäÒ¹¯Ò¹Ë¯Ë²ºËººÓººÈÏÒ°È}
¯ºä
iã«ºËÓ}ÒËã˰ºº¯ÈÏÓº°ÒÒ°¹ºãϺmÈÓÒ«º¹¯ËËãËÓÒ«ºË}ºmm
n
Λ
˯ËÏ
Ò²}ºä¹ºÓËÓ©¹¯ÒmËËämÈãÒË¯º°ÓºmÓ©Ë¯È°°äº¯ËÓÓ©ËÓÈäÒ¯ÈÓËËÒ
¹© ºË}ºm Áº¯ä© Ò² ¹¯Ë°ÈmãËÓÒ« m ÈÏÒ°Ë Ò ¹¯ÈmÒãÈ ÒÏäËÓËÓÒ« ªºº
¹¯Ë°ÈmãËÓÒ«¹¯Ò¹Ë¯Ë²ºËºÈÏÒ°È
{, ,..., }gg g
n
12
}ÈÏÒ°
{, ,..., }
′′ ′
gg g
n
12

¯ÒãºÎËÓÒË
wãËäËӈ©ˆËÓϺ¯ÓººÒ°Ò°ãËÓÒ«



             
             
             
             
             
             
             
¯ÒãºÎËÓÒË
wplps‘h‘ps~|cs|€|jv jvpsjÐ
             
             
             
             
¯~ÈäËÈÓÒ« º­ º¹¯ËËãËÓÒÒ º­žË}ˆºm m ãÒÓˮӺä ¹¯º
         °ˆ¯ÈÓ°ˆmË
             
             
             
           {¹¯Ë©‚Ò²¯ÈÏËãȲ}‚¯°ÈãÒÓˮӺ®ÈãË­¯©Ò°°ã˺mÈãÒ° ÓÈÒ­ºãËËȰˆº
m°ˆ¯ËÈ Ò˰« m ¹¯ÒãºÎËÓÒ«² mÒ© º­žË}ˆºm m ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË ˆÈ}ÒË }È}
ªãËäËӈ ãÒÓˮӺº ¹¯º°ˆ¯ÈÓ°ˆmÈ ãÒÓˮө® Á‚Ó}ÒºÓÈã ãÒÓˮө® º¹Ë¯Èˆº¯ ­ÒãÒ
Óˮө® Á‚Ó}ÒºÓÈã Ò ˆ ²ºˆ« m¹ºãÓË ºËmÒÓº ˆº m ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË äº‚ˆ
­©ˆ º¹¯ËËãËÓ©ÒÒÓ©Ë­©ˆ äºÎˈ­ºãË˰ãºÎө˺­žË}ˆ©¹¯Ë°ˆÈmã« Ò˹¯È}
ˆÒ˰}Ò®Òӈ˯˰
       
         |¹¯ËËãËÓÒË m°Ë² ¯È°°äºˆ¯ËÓÓ©² ¯ÈÓËË º­žË}ˆºm ÈmÈ㺰  mÓË ÏÈmÒ°Ò亰ˆÒ ºˆ
ÓÈãÒÒ«ÒãÒºˆ°‚ˆ°ˆmÒ«­ÈÏÒ°ÈãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmȹ¯ÒËäm°ã‚È˰‚Ë°ˆmºmÈÓÒ«
­ÈÏÒ°È ã« }Èκº ÒÏ º­žË}ˆºm ¹¯ÒmºÒã°« È㠈˯ÓȈÒmÓ©® ¹º}ºä¹ºÓËӈө® °¹º°º­
˺ º¹Ò°ÈÓÒ« j ¹º°}ºã }‚ ÏÈäËÓÈ ­ÈÏÒ°È äËӫˈ mºº­Ë ºmº¯« ÈÓÓºË º¹Ò°ÈÓÒË ˆº
°¹ËÒÈã ÓºÒ°°ã˺mÈã°«mº¹¯º°º²È¯È}ˆË¯ËªˆººÒÏäËÓËÓÒ«
         
       |ÓÈ}º ˰ˆË°ˆmËÓÓº º¹‚°ˆÒˆ  ˆº m ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË Λn °‚Ë°ˆm‚ ˆ
º­žË}ˆ© }ºˆº¯©Ë äºÎÓº º¹¯ËËã҈  Ò°¹ºã ς« ãÒ  ÏÓÈËÓÒ« Ò² }ºä¹ºÓËӈºm m
ÓË}ºˆº¯ºä­ÈÏÒ°Ë‘È}º®¹º²º¹¯ÒmãË}ȈËãËÓˆË䈺
            
            mº¹Ë¯m©²mªˆºä°ã‚ÈËÓˈ¯Ë­‚ˈ°«º­ž«°Ó«ˆ ˆº¹¯Ë°ˆÈmã«Ëˆ°º­º®
                ÈÓÓ©®º­žË}ˆ­ËϺˆÓº°ÒˆËã Óº}­ÈÏÒ°‚
            
            Òmºmˆº¯©²º¹¯ËËãËÓÒ«º­žË}ˆºm¯ÈÏÓº®¹¯Ò¯º©äº‚ˆ­©ˆ m©¹ºã
                ÓËÓ©ËÒÓºº­¯ÈÏÓº
            
       v ¯‚º® °ˆº¯ºÓ© Ó˺°ˆÈˆ}ºä ˆÈ}º® °²Ëä© «mã«Ëˆ°« ºËmÒÓÈ« ÏÈmÒ°Ò亰ˆ 
º¹Ò°ÈÓÒ«º­žË}ˆÈºˆm©­º¯È­ÈÏҰȈº˰ˆ Ó˺­²ºÒ亰ˆ ‚}ÈÏ©mȈ  m°Èäºäº¹¯Ë
ËãËÓÒÒº­žË}ˆÈ ˆº¹¯ºÒ°²º҈°Ëº}ºä¹ºÓËӈÈäÒ¹¯Ò¹Ë¯Ë²ºËºˆºÓºº­ÈÏÒ°È}
¯‚ºä‚
       
       i㫺ËÓ}ÒËã˰ºº­¯ÈÏÓº°ˆÒÒ°¹ºã ϺmÈÓÒ«º¹¯ËËãËÓÒ«º­žË}ˆºmm Λn ˯ËÏ
Ò²}ºä¹ºÓËӈ©¹¯ÒmËËämˆÈ­ãÒˁ¯º°Óºmө˯Ȱ°äºˆ¯ËÓÓ©ËÓÈäÒ¯ÈÓËˈÒ
¹© º­žË}ˆºm Áº¯ä© Ò² ¹¯Ë°ˆÈmãËÓÒ« m ­ÈÏÒ°Ë Ò ¹¯ÈmÒãÈ ÒÏäËÓËÓÒ« ªˆºº
¹¯Ë°ˆÈmãËÓÒ«¹¯Ò¹Ë¯Ë²ºËºˆ­ÈÏÒ°È {g1 , g 2 ,..., g n } }­ÈÏÒ°‚ {g1′ , g 2′ ,..., g n′ }