Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 328 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
Ò¹ºË}È
m
n
Λ
zºº¯ÒÓÈÓºË¹¯Ë°ÈmãËÓÒËm
ÈÏÒ°Ë
{, ,..., }gg g
n
12
¯ÈmÒãºÒÏäËÓËÓÒ«}ºº¯ÒÓÈÓº
º¹¯Ë°ÈmãËÓÒ«¹¯Ò¹Ë¯Ë²ºË}
ÈÏÒ°
{, ,..., }
′′ ′
gg g
n
12
wãËäËÓ
[
vºãË
n
g
x
ξ
ξ
ξ
...
2
1
=
xSx
gg
=
1
ÒãÒ
=
=
n
i
ijij
1
ξ
τ
ξ
ÒÓˮө®
ÁÓ}ÒºÓÈã
)(
xf
v¯º}È
f
g
n
=
φφ φ
12
...
Ë
φ
ii
fg= ()
ffS
gg
=
ÒãÒ
=
=
n
i
ijij
1
σφφ
ÒÓˮө®
º¹Ë¯Èº¯
$
...
...
... ... ... ...
...
A
g
n
n
nn nn
=
αα α
αα α
αα α
11 12 1
21 22 2
12
Ë
],1[;
ˆ
1
njggA
n
i
iijj
==
=
α

ASAS
gg
=
1
ÒãÒ
jmmi
n
j
n
m
kjki
αστα
∑∑
==
=
11
rÒãÒÓˮө®
ÁÓ}ÒºÓÈã
),( yxB
B
g
n
n
nn nn
=
ββ β
ββ β
ββ β
11 12 1
21 22 2
12
...
...
... ... ... ...
...
Ë
],1[,;),(
njiggB
jiij
==
β
BSBS
gg
=
T
ÒãÒ
jmmi
n
j
n
m
jkki
βσσβ
∑∑
==
=
11
zmȯÈÒÓ©®
ÁÓ}ÒºÓÈã
)(x
nnnn
n
n
g
ϕϕϕ
ϕϕϕ
ϕϕϕ
...
............
...
...
21
22221
11211
=

Ë
],1[,;
2
nji
jiij
ij
=
+
=
ββ
ϕ
ΦΦ
=
gg
SS
T
ÒãÒ
jmmi
n
j
n
m
jkki
ϕσσϕ
∑∑
==
=
11
Òjisq|j¯
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                                            

                                               
                                                                                                              
                                                                           ¯ÈmÒãºÒÏäËÓËÓÒ«}ºº¯ÒÓȈӺ
   ‘Ò¹º­žË}ˆÈ zºº¯ÒÓȈӺ˹¯Ë°ˆÈmãËÓÒËm º¹¯Ë°ˆÈmãËÓÒ«¹¯Ò¹Ë¯Ë²ºË}
        m Λn                 ­ÈÏÒ°Ë {g1 , g 2 ,..., g n }                            ­ÈÏÒ°‚ {g1′ , g 2′ ,..., g n′ } 
                                                                                                             
                                                                                                            
                                                       ξ1                                                         −1
                                                                                                 x g′ = S                x g
            
                                                        ξ2                                                ÒãÒ
     wãËäËӈ[                 vˆºã­Ë x g =               
                                                                       ...                                            n

                                                                       ξn                                   ξ ′j = ∑τ jiξ i 
                                                                                                                  i =1
                                                              
                                                             
                                                                                                                      
                                                       vˆ¯º}È                                                       


     ÒÓˮө®                       f           = φ1 φ2          ... φn Ë                        f    g′
                                                                                                                  = f           g
                                                                                                                                     S 
    Á‚Ó}ÒºÓÈã                              g
                                                                                                                  ÒãÒ
        f (x )                                     φi = f ( g i )                                                   n
                                                                                                           φ ′j = ∑ φiσ ij 
                                                                                                                  i =1
                                                             
                                                                                                                       
                                              α11 α12             ... α1n                                             

                                                                                                                           −1
                                              α 21 α 22           ... α 2 n                       A        = S                A       S 
     ÒÓˮө®                  A           =                                 Ë                   g′                           g

              
                                         g      ...  ...           ... ...                                        ÒãÒ
    º¹Ë¯Èˆº¯ $
                                               α n1 α n 2          ... α nn                                   n    n
                                                                                                    ′ = ∑ ∑τ kjσ miα jm 
                                                                                                  α ki
                                                    n
                                                                                                             j =1m =1
                                         Aˆ g j = ∑α ij g i ;        j = [1, n] 
                                                   i =1

                                                             
                                                                                                                       
                                              β11        β12      ... β1n                                             

                                                                                                                           T
                                              β21        β22      ... β2 n                        B    g′
                                                                                                             = S                B        S 
                                             =
                                                                                                                                     g
    rÒãÒÓˮө®                  B                                          Ë
    Á‚Ó}ÒºÓÈã
                                         g     ...         ...     ... ...                                        ÒãÒ
       B( x, y )                              βn1        βn 2     ... βnn                                    n   n
                                                                                                 β ki′ = ∑ ∑ σ jk σ mi β jm 
                                                                                                            j =1m =1
                                     β ij = B( g i , g j ) ; i , j = [1, n] 

                                                             
                                                                                                                       
                                                  ϕ11 ϕ12           ... ϕ1n                                           
                                                 ϕ     ϕ 22         ... ϕ 2n                                              T
  zmȯȈÒÓ©®                                 = 21                                           Φ     g′
                                                                                                             = S                Φ    g
                                                                                                                                         S 
                                             g      ...  ...         ...  ...
   Á‚Ó}ÒºÓÈã                                                                                                    ÒãÒ
       (x )                                     ϕ n1 ϕ n2          ... ϕ nn                                n    n
                                                                                                  ′ = ∑ ∑ σ jk σ miϕ jm 
                                                                                                 ϕ ki
                                                                                                             j =1m =1
                                                   β ij + β ji
                                Ë ϕ ij =                       ; i , j = [1, n]                                    
                                                          2                                                            
            
            Òjisq|j¯