Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 329 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


wãËäËÓ©ËÓϺ¯ÓººÒ°Ò°ãËÓÒ«
zÈ}Ò¯ÈÓËËËä¹¯Ë¹ºãÈÈºäÈ¯ÒÈ¹Ë¯Ë²ºÈ
S
ÒäËË}ºä¹ºÓËÓ©
ij
σ
Ë
],1[;
1
njgg
n
i
iijj
==
=
σ
ÈäÈ¯ÒÈº¯ÈÓºº¹Ë¯Ë²ºÈ
TS=
1
ÒäËË}ºä
¹ºÓËÓ©
τ
ij
º˰
],1[;
1
njgg
n
i
iijj
=
=
=
τ

vº¹º°ÈmãËÓÒË Áº¯äã ¯ËË® }ºãºÓ}Ò ÈãÒ© ¹ºÏmºã«Ë ÏÈäËÒ º ã«
ÈÓÓ©²ºË}ºm
°
~ÓÈËÓÒ« Ò² }ºä¹ºÓËÓºm m ÈÏÒ°Ë
},...,,{
21
n
ggg
sqtnpt¹ºÏÓÈËÓÒ«ä
}ºä¹ºÓËÓºmmÈÏÒ°Ë
},...,,{
21
n
ggg

°zºªÁÁÒÒËÓÈäÒ m ªÒ² Áº¯äãȲ °ãÎÈ ãÒº }ºä¹ºÓËÓ© äÈ¯Ò
S
ÒãÒ
S
1
ãÒºÒº®Ò¯º®ºÓºm¯ËäËÓÓº
{}¯°ËãÒÓˮӺ®ÈãË¯©ÓÈäÒ©ãÒ¯È°°äº¯ËÓ©ÈãË}ºÓËm°Ë©ºË}
ºm }ºº¯©Ë ºãÈÈ ¹ººÓ©äÒ ¯ÈÓ°Áº¯äÈÒºÓÓ©äÒ °mº®°mÈäÒ sȹ¯Òä˯ m
n
Λ
äºÎÓºmm˰Òwévqoknlntqnësnuntzvk
xy
¹º°ÈmÒmm}ÈκäÈÏÒ°Ë¹º¯«ºËÓÓº®
¹È¯Ë ªãËäËÓºm
n
x
ξ
ξ
ξ
...
2
1
=
Ò
n
y
η
η
η
...
2
1
=
m °ººmË°mÒË äÈ¯Ò ¯ÈÏä˯È
nn
×
ÒäË

nnnn
n
n
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
...
............
...
...
21
22212
12111

sË¯Óº ËÒ°« º ºË}
[\
¹¯Ò ¹Ë¯Ë²ºË º ÈÏÒ°È
},...,,{
21
n
ggg
}
ÈÏÒ°
},...,,{
21
n
ggg
äËÓ«Ë°« m °ººmË°mÒÒ ° ¹¯ÈmÒãÈäÒ
°
Ò
°
 iË®°mÒËãÓº ÒÏ
=
=
n
i
iikk
1
ξ
τ
Ò
=
=
n
m
mjmj
1
ητη
°ãËËº
∑∑
==
=
n
i
n
m
mijmkijk
11
η
ξ
ττη
ÒãÒÎËmäÈ¯ÒÓºä
Ë
xy S xy S
gg
⊗=
−−
()
T
11
 º°ãËÓËË¯ÈmËÓ°mº ºÏÓÈÈË ºmmËËÓÓºË
ÓÈäÒ¹¯ºÒÏmËËÓÒËªãËäËÓºmºãÈÈË°mº®°mÈäÒ
°
Ò
°

cȰ°äº¯Òä ¯º® ¹¯Òä˯ ËäºÓ°¯Ò¯Ò® °˰mºmÈÓÒË ºãËË °ãºÎÓ©²
ºË}ºmºãÈÈÒ²ÈÓÓ©äÒ°mº®°mÈäÒiº°ÈºÓºȰºmÁÒÏÒ˰}Ò²¹¯ÒãºÎË
ÓÒ«²Ò°¹ºãÏË°«äËºm}ºº¯ºäãÒÓˮө®º¹Ë¯Èº¯º¹Ò°©mÈËÏÈmÒ°Ò亰ºÓºº
mË}º¯È²È¯È}˯ÒÏ˺ÓË}ºº¯ºË°mº®°mºº}Ò¹¯º°¯ÈÓ°mÈº¯ººmË}º¯È
«mã«˺°«ÒÓº®²È¯È}˯ҰÒ}º®ªº®ÎËº}Ò
¯ÒãºÎËÓÒË
wãËäËӈ©ˆËÓϺ¯ÓººÒ°Ò°ãËÓÒ«



              zÈ}Ò¯ÈÓËË­‚Ë乯˹ºãÈȈ ˆºäȈ¯Òȹ˯˲ºÈ S ÒäËˈ}ºä¹ºÓËӈ©
                       n                                                                                                  −1
σ ij Ë g ′j = ∑σ ij g i ;             j = [1, n] ÈäȈ¯ÒȺ­¯ÈˆÓºº¹Ë¯Ë²ºÈ T = S                                    ÒäËˈ}ºä
                      i =1
                                                 n
¹ºÓËӈ© τ ij ˆº˰ˆ  g j =                  ∑τ ij g i′ ;       j = [1, n] 
                                                i =1
       
       
       vº¹º°ˆÈmãËÓÒË Áº¯ä‚ã ˆ¯Ëˆ Ë® }ºãºÓ}Ò ˆÈ­ãÒ© ¹ºÏmºã«Ëˆ ÏÈäˈ҈  ˆº ã«
ÈÓÓ©²º­žË}ˆºm
              

              °~ÓÈËÓÒ« Ò² }ºä¹ºÓËӈºm m ­ÈÏÒ°Ë {g1′ , g 2′ ,..., g n′ }  sqtnpt€ ¹º ÏÓÈËÓÒ«ä
                   }ºä¹ºÓËӈºmm­ÈÏÒ°Ë{g1 , g 2 ,..., g n } 
              


              °zºªÁÁÒÒËӈÈäÒ m ªˆÒ² Áº¯ä‚ãȲ °ã‚ÎȈ ãÒ­º }ºä¹ºÓËӈ© äȈ¯Ò S 
                                −1
                   ÒãÒ S             ãÒ­ºÒˆº®Ò¯‚º®ºÓºm¯ËäËÓÓº
              
              {}‚¯°ËãÒÓˮӺ®ÈãË­¯©ÓÈäÒ­©ãүȰ°äºˆ¯ËÓ©ÈãË}ºÓËm°ËmÒ©º­žË}
ˆºm }ºˆº¯©Ë º­ãÈÈ ˆ ¹ºº­Ó©äÒ ˆ¯ÈÓ°Áº¯äÈÒºÓÓ©äÒ °mº®°ˆmÈäÒ sȹ¯Òä˯ m Λn
äºÎÓºmm˰ˆÒwévqoknlntqnësnuntzvk x ⊗ y ¹º°ˆÈmÒmm}Èκä­ÈÏÒ°Ë‚¹º¯«ºËÓÓº®
                     ξ1                                     η1
                     ξ2                                     η2
¹È¯Ë ªãËäËӈºm x =      Ò y =                                m °ººˆmˈ°ˆmÒË äȈ¯Ò‚ ¯ÈÏä˯È n× n  ÒäË ‚ 
                     ...                                    ...
                     ξn                                     ηn
      ξ1η1 ξ1η 2               ... ξ1η n
      ξ 2η1 ξ 2η 2             ... ξ 2η n
mÒ                                                
        ...   ...              ...   ...
      ξ nη1 ξ nη 2             ... ξ nη n
              
              sˈ¯‚Óº ‚­Ë҈ °« ˆº º­žË}ˆ [ ⊗ \  ¹¯Ò ¹Ë¯Ë²ºË ºˆ ­ÈÏÒ°È {g1 , g 2 ,..., g n }  }
­ÈÏÒ°‚ {g1′ , g ′2 ,..., g ′n }  äËӫˈ°« m °ººˆmˈ°ˆmÒÒ ° ¹¯ÈmÒãÈäÒ ° Ò ° iË®°ˆm҈Ëã Óº ÒÏ
         n                           n                                                n   n
ξ k′ = ∑τ k iξ i Ò η ′j =          ∑τ jmηm °ãË‚ˈˆº ξ k′ η ′j = ∑ ∑ τ ki τ jmξ iηm ÒãÒÎËmäȈ¯ÒÓºä
       i =1                      m =1                                                i =1 m =1
                                         −1 T                          −1
mÒË x ⊗ y          g′
                           =( S           )          x⊗ y      g
                                                                   S         º°ãËÓËË ¯ÈmËÓ°ˆmº ºÏÓÈÈˈ ˆº mmËËÓÓºË
ÓÈäÒ¹¯ºÒÏmËËÓÒ˪ãËäËӈºmº­ãÈÈˈ°mº®°ˆmÈäÒ°Ò°
       
       cȰ°äºˆ¯Òä ¯‚º® ¹¯Òä˯ ËäºÓ°ˆ¯Ò¯‚ Ò® °‚Ë°ˆmºmÈÓÒË ­ºãËË °ãºÎÓ©²
º­žË}ˆºmº­ãÈÈ Ò²ÈÓÓ©äÒ°mº®°ˆmÈäÒiº°ˆÈˆºÓºȰˆºmÁÒÏÒ˰}Ò²¹¯ÒãºÎË
ÓÒ«²Ò°¹ºã ςˈ°«äˈºm}ºˆº¯ºäãÒÓˮө®º¹Ë¯Èˆº¯º¹Ò°©mÈˈÏÈmÒ°Ò亰ˆ ºÓºº
mË}ˆº¯È²È¯È}ˆË¯Òς ËºÓË}ºˆº¯ºË°mº®°ˆmºˆº}Ò¹¯º°ˆ¯ÈÓ°ˆmȺˆ¯‚ººmË}ˆº¯È
«mã« Ëº°«ÒÓº®²È¯È}ˆË¯Ò°ˆÒ}º®ªˆº®Îˈº}Ò