Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 331 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


wãËäËÓ©ËÓϺ¯ÓººÒ°Ò°ãËÓÒ«
º°}ºã}¹¯ÈmÒãº ÒÏäËÓËÓÒ« }ºä¹ºÓËÓºm äÈ¯Ò© º¹Ë¯Èº¯È
A
m
n
Λ
ÒäËË

ASAS
gg
=
1
ÒãÒ
jmmi
n
j
n
m
kjki
αστα
∑∑
==
=
11
ºÒÏ¹¯ÈmÒãÈÒÁÁ˯ËÓÒ¯ºmÈ
ÓÒ«°ãºÎÓº®ÁÓ}ÒÒ°ãËËº
∑∑∑∑∑∑
========
=
=
=
n
j
n
m
n
p
lp
p
jm
imjk
n
p
l
p
p
jm
mi
n
j
n
m
kj
l
jm
n
j
n
m
mikj
l
ik
111
T
11111
σ
ξ
∂α
στ
ξ
ξ
ξ
∂α
στ
ξ
∂α
στ
ξ
α
ÒãÒmäÈ¯ÒÓº®Áº¯äË

T
A
r
SS
A
r
S
gg
=
1
|°ÈËãÈËäÏÈ}ãËÓÒËº
mmËËÓÓ©®ÓÈäÒÓºm©®ºË}È}ÎËºãÈÈË°mº®°mÈäÒ
°
Ò
°

v ¯º® °º¯ºÓ© ºäËÒä º ÓË m°«}Ò® ºÓºÏÓÈÓº º¹¯ËËã«Ëä©® °mºÒäÒ
}ºä¹ºÓËÓÈäÒºË}ËºãÈÈ¹ººÓ©äÒ¯ÈÓ°Áº¯äÈÒºÓÓ©äÒ°mº®°mÈäÒ
sȹ¯Òä˯ ¯È°°äº¯Òä ºÓº}ºä¹ºÓËÓÓ©® ºË}
ω
 ÏÓÈËÓÒË }ºº¯ºº ã«
}ÈκºªãËäËÓÈ
n
x
ξ
ξ
ξ
...
2
1
=
¹¯º°¯ÈÓ°mÈ
n
Λ
˰°ääÈ}ºä¹ºÓËÓºm
x
iã«Ó˺mÈ
ÏÒ°Ë
},...,,{
21 n
ggg
ÒäËËä
=
=
n
i
i
1
ξ
ω
Ò ²º« ÏÓÈËÓÒË
ω
Òº¹¯ËËã«Ë°« ºÓºÏÓÈÓº m
ÈÏÒ°Ë
},...,,{
21 n
ggg
 ºÓº ÓË m©¯ÈÎÈË°« ãÒÓˮӺ ˯ËÏ
ω
 È} }È}
∑∑
===
=
=
n
i
j
n
j
ij
n
i
i
111
ξ
τ
ξ
ω

È}Òä º¯ÈϺä ä© ¹¯Ò²ºÒä } ÏÈ}ãËÓÒ ºm}ºÓËÓºä˯Ӻä ãÒÓˮӺä
¹¯º°¯ÈÓ°mË°˰mËº°ÈºÓºÒ¯º}Ò®}ãȰ°ºË}ºmÏÈÈmÈË䩲
 °ºmº}¹Óº°ÏÓÈËÓÒ®°mºÒ²}ºä¹ºÓËÓºmmÓË}ºº¯ºäÈÏÒ°ËÒ
 °mº®°mÈäÒÈ
°
Ò
°
²È¯È}˯ÒÏÒäÒÒÏäËÓËÓÒ«ªÒ²}ºä¹ºÓËÓºm
¹¯Ò¹Ë¯Ë²ºËººÓººÈÏÒ°È}¯ºä
|Ë}© ºãÈÈÒË ¹Ë¯ËÒ°ãËÓÓ©äÒ °mº®°mÈäÒ ÓÈÏ©mÈ zntovéjuq
ºÓ««ªºÓÈÏmÈÓÒËm°ãÈË¹¯Ò°°mÒ«äÈ¯Ò
S
ÒãÒ
S
7
mÁº¯äãȲ¹Ë¯Ë°ËÈ
}ºä¹ºÓËÓºmËÓϺ¯È¹¯ÒÏÈäËÓËÈÏÒ°Èº¹¯ËËãËÓÒËärvkjéqjtztpº˰wénviéj
oyíqpx¹ zjr n rjr q ijoqxtn ësnuntzÒãÒÎËm°ãÈË ¹¯Ò°°mÒ« äÈ¯Ò
S
1
ÒãÒ
()
T
S
1
º¹¯ËËãËÓÒËärvtzéjkjéqjtztp
¯ÒãºÎËÓÒË
wãËäËӈ©ˆËÓϺ¯ÓººÒ°Ò°ãËÓÒ«



                  º°}ºã }‚ ¹¯ÈmÒ㺠ÒÏäËÓËÓÒ« }ºä¹ºÓËӈºm äȈ¯Ò© º¹Ë¯Èˆº¯È A  m Λn ÒäËˈ
                                      −1
                                                                              n     n
mÒ A                     = S             A                  ′ = ∑ ∑τ kjσ miα jm ˆºÒϹ¯ÈmÒãÈÒÁÁ˯ËÓÒ¯ºmÈ
                                                     S  ÒãÒ α ki
                      g′                         g
                                                                              j =1m =1
ÓÒ«°ãºÎÓº®Á‚Ó}ÒÒ°ãË‚ˈˆº
       
                 ∂ α k′ i    n n        ∂α jm     n n         n ∂α
                                                                      jm ∂ ξ p
                                                                                  n n n
                                                                                              T ∂α jm
                          = ∑ ∑τ kjσ mi        = ∑ ∑τ kjσ mi ∑                 = ∑ ∑ ∑τ k jσ im       σ pl 
                  ∂ ξ l′    j =1m =1     ∂ ξ ′
                                             l   j =1m =1    p =1 ∂ ξ  p ∂ ξ ′
                                                                             l   j =1m =1p =1   ∂ ξ p
                  

                                                          ∂ A                 −1        T   ∂ A
ÒãÒmäȈ¯ÒÓº®Áº¯äË                                    →           = S         S          →        S |ˆ° ÈËãÈËäÏÈ}ã ËÓÒˈº
                                                          ∂r      g′
                                                                                             ∂r     g

mmËËÓÓ©®ÓÈäÒÓºm©®º­žË}ˆˆÈ}Î˺­ãÈÈˈ°mº®°ˆmÈäÒ°Ò°
       
       
       v ¯‚º® °ˆº¯ºÓ© ºˆäˈÒä ˆº ÓË m°«}Ò® ºÓºÏÓÈÓº º¹¯ËËã«Ëä©® °mºÒäÒ
}ºä¹ºÓËӈÈäÒº­žË}ˆ­‚ˈº­ãÈȈ ¹ºº­Ó©äÒˆ¯ÈÓ°Áº¯äÈÒºÓÓ©äÒ°mº®°ˆmÈäÒ
       
       sȹ¯Òä˯ ¯È°°äºˆ¯Òä ºÓº}ºä¹ºÓËӈө® º­žË}ˆ ω  ÏÓÈËÓÒË }ºˆº¯ºº ã«
                      ξ1
                      ξ2
}ÈκºªãËäËӈÈ x =     ¹¯º°ˆ¯ÈÓ°ˆmÈ Λn ˰ˆ °‚ääÈ}ºä¹ºÓËӈºm x iã«Ó˺m­È
                      ...
                      ξn
                                                                  n
ÏÒ°Ë {g1 , g 2 ,..., g n }  ÒäËËä ω =                         ∑ ξ i  Ò ²ºˆ« ÏÓÈËÓÒË ω ′  Ò º¹¯ËËã«Ëˆ°« ºÓºÏÓÈÓº m
                                                                 i =1
­ÈÏÒ°Ë                    {g1′ , g 2′ ,..., g n′ }    ºÓº          ÓË     m©¯ÈÎÈˈ°«               ãÒÓˮӺ   ˯ËÏ   ω   ˆÈ}       }È}
             n                 n     n
ω ′ = ∑ ξ i′ = ∑ ∑ τ ijξ j 
         i =1                 i =1 j =1
       
       
       ‘È}Òä º­¯ÈϺä ä© ¹¯Ò²ºÒä } ÏÈ}ã ËÓÒ  ˆº m }ºÓËÓºä˯Ӻä ãÒÓˮӺä
¹¯º°ˆ¯ÈÓ°ˆm˰‚Ë°ˆm‚ˈº°ˆÈˆºÓº Ò¯º}Ò®}ãȰ°º­žË}ˆºmÏÈÈmÈË䩲
                       
                        °ºmº}‚¹Óº°ˆ                    ÏÓÈËÓÒ®°mºÒ²}ºä¹ºÓËӈºmmÓË}ºˆº¯ºä­ÈÏÒ°ËÒ
                       
                        °mº®°ˆmÈäÒmÒȰҰ²È¯È}ˆË¯Òς ÒäÒÒÏäËÓËÓÒ«ªˆÒ²}ºä¹ºÓËӈºm
                           ¹¯Ò¹Ë¯Ë²ºËºˆºÓºº­ÈÏÒ°È}¯‚ºä‚
                  
                  
                  |­žË}ˆ© º­ãÈÈ ÒË ¹Ë¯ËÒ°ãËÓÓ©äÒ °mº®°ˆmÈäÒ ÓÈÏ©mÈ ˆ zntovéjuq
                                                                                                                    7
‚ˆºÓ««ªˆºÓÈÏmÈÓÒËm°ã‚È˹¯Ò°‚ˆ°ˆmÒ«äȈ¯Ò S ÒãÒ S mÁº¯ä‚ãȲ¹Ë¯Ë°ˈÈ
}ºä¹ºÓËӈºmˆËÓϺ¯È¹¯ÒÏÈäËÓË­ÈÏҰȺ¹¯ËËãËÓÒËärvkjéqjtzt€p ˆº˰ˆ wénviéj
oyíqpx¹ zjr n rjr q ijoqxt€n ësnuntz€  ÒãÒ ÎË m °ã‚ÈË ¹¯Ò°‚ˆ°ˆmÒ« äȈ¯Ò
        −1                           −1 T
    S        ÒãÒ ( S                    ) º¹¯ËËãËÓÒËärvtzéjkjéqjtzt€p