Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 332 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
¯|¹¯ËËãËÓÒËÒººÏÓÈËÓÒËËÓϺ¯ºm
|ËËº¹¯ËËãËÓÒËËÓϺ¯ÈÒ°²º«ÒÏËÒÏãºÎËÓÓ©²°ºº¯ÈÎËÓÒ®°ã˺
mÈãº©¹¯ËãºÎÒÓȹ¯Òä˯mÈ}º®Áº¯äË
rËäºmº¯Ò ºm mË˰mËÓÓºäãÒÓˮӺä¹¯º°¯ÈÓ°mË
n
Λ
º¹¯ËËãËÓzntové
zqwj
),(
pq

T
éjo rvtzéjkjéqjtztpÒ
S
éjo rvkjéqjtztp qsq
pq
+
kjsntztp ˰ãÒ m
n
Λ
ÏÈÈÓ ºË} }ºº¯©® m }Èκä ÈÏÒ°Ë ²È¯È}˯ÒÏË°«
¹º¯«ºËÓÓ©ä ÓÈº¯ºä
qp
n
+
Ò°Ëã
pq
iiijjj ......
212
1
ξ
Ë
],1[;],1[
qmnj
m
==
}ºÓ
¯ÈmȯÒÈÓÓ©Ë ÒÓË}°© Ò
],1[;],1[
pkni
k
==
 }ºmȯÒÈÓÓ©Ë ¹¯Ëº¯ÈÏÒ²°«
¹¯Ò¹Ë¯Ë²ºËºÈÏÒ°È
},...,,{
21
n
ggg
}ÈÏÒ°
},...,,{
21
n
ggg
¹ºÏÈ}ºÓ
=
pq
iiijjj ......
212
1
ξ
∑∑
== = = = =
n
i
n
i
n
i
n
j
n
j
n
j
iiiiii
pq
pp
11 1 1 1 1
12 1 2
2211
.........
σσσ
qq
jjjjjj
τττ
...
2211
pq
iiijjj
......
212
1
ξ

Ë
],1[
ni
k
=

],1[
pk =
Ò
],1[ pj
k
=

],1[
mk =
È
ij
σ
Ò
ij
τ
˰°ººmË°mËÓÓº}ºä¹º
ÓËÓ©äÈ¯Ò©¹Ë¯Ë²ºÈ
S
ÒË®º¯ÈÓº®
TS=
1

¯ºäºÏ}º°ÒÓ˺ºÒÈË亰°ÈÓȯÓº®°²Ëä©ººÏÓÈËÓÒ®¹¯ÒäËÓÒ
ËãÓº}ËÓϺ¯ÈäºËmÒÓ©ÎËÓÈ¹¯Òä˯Ëªººº¹¯ËËãËÓÒ«ºªºämËÓϺ¯Óºä
Ò°Ò°ãËÓÒÒ Ò°¹ºãÏË°« °¹ËÒÈãÓÈ« ºãËË }ºä¹È}ÓÈ« Áº¯äÈ º¹Ò°ÈÓÒ« ËÓϺ¯Ó©²
ºË}ºmÒº¹Ë¯ÈÒ®°ÓÒäÒº°Óºm}ºº¯º®°º°Èmã«°ãËÒË¹¯ÈmÒãÈ
~ȹҰËÓϺ¯ºm
° ¹º¯«ºËÓÓ©®ÓÈº¯mË˰mËÓÓ©²Ò°Ëã«mã«Ò²°«}ºä¹ºÓËÓÈäÒËÓ
Ϻ¯È º¯ÈÏË
pq +
unétyí zjisq|y ÓÈÏ©mÈËäÈ}ÎË
pq +
unétvp
ujzéq|np ÒãÒ
pq +
unétu ujxxqkvu }ÈΩ® ªãËäËÓ }ºº¯º®
ºÓºÏÓÈÓº º¹¯ËËãËÓ ÓÈº¯ºä ÏÓÈËÓÒ® }ºÓ¯ÈmȯÒÈÓÓ©² ÒÓË}°ºm
q
jjj
,...,,
21
Ò}ºmȯÒÈÓÓ©²ÒÓË}°ºm
p
iii
,...,,
21

p°ãÒ }È}º®ãÒº ÒÏ ÒÓË}°ºm ¹¯ÒÓÒäÈË ÏÓÈËÓÒ« º  º
Q
 º m ÏȹҰÒ
ËÓϺ¯È wnén·nt otj·ntqp qtlnrxj tn yrjokjnzx¹Ò¹¯Ë¹ºãÈÈË°« º
m©¹Ò°ÈÓ©}ºä¹ºÓËÓ©ËÓϺ¯Èã«kxn}ªÒ²ÏÓÈËÓÒ®
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



¯|¹¯ËËãËÓÒËÒº­ºÏÓÈËÓÒˈËÓϺ¯ºm
       
       
       
       |­Ë˺¹¯ËËãËÓÒˈËÓϺ¯ÈÒ°²º«ÒÏm© ËÒÏãºÎËÓÓ©²°ºº­¯ÈÎËÓÒ®°ã˺
mÈ㺭©¹¯ËãºÎ҈ Óȹ¯Òä˯mˆÈ}º®Áº¯äË
       
       
      r‚Ëä ºmº¯Òˆ  ˆº m m˝˰ˆmËÓÓºä ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË Λn º¹¯ËËãËÓ zntové
      zqwj ( q, p )  T éjo rvtzéjkjéqjtzt€p Ò S éjo rvkjéqjtzt€p qsq p + q  
      kjsntzt€p  ˰ãÒ m Λn ÏÈÈÓ º­žË}ˆ }ºˆº¯©® m }ÈÎºä ­ÈÏÒ°Ë ²È¯È}ˆË¯Òςˈ°«
      ‚¹º¯«ºËÓÓ©ä ÓÈ­º¯ºä n p + q  Ò°Ëã ξ j j ... j i i ...i  Ë jm = [1, n] ; m = [1, q]   }ºÓ
                                                  1 2     q12      p

      ˆ¯ÈmȯÒÈӈөË ÒÓË}°© Ò ik = [1, n] ; k = [1, p]   }ºmȯÒÈÓˆÓ©Ë  ¹¯Ëº­¯Èς Ò²°«
      ¹¯Ò¹Ë¯Ë²ºËºˆ­ÈÏÒ°È{g1 , g 2 ,..., g n } }­ÈÏÒ°‚{g1′ , g 2′ ,..., g n′ } ¹ºÏÈ}ºÓ‚
      
      
                                           n    n        n     n     n       n
          ξ ′ j′ j′ ... j′ i′i′ ...i′ =
                1   2    q12      p
                                          ∑ ∑ ... ∑ ∑ ∑ ... ∑ σ i i ′ σ i i ′ ...σ i 11   2 2   p i ′p
                                                                                                         τ j ′ j τ j ′ j ...τ j ′
                                                                                                              1 1   2 2         q jq
                                                                                                                                       ξ   j1 j2 ... jqi1i2 ...i p
                                                                                                                                                                     
                                          i1 =1i 2 =1 i p =1 j1 =1 j 2 =1   j q =1
                                                                                     
      
      Ë ik′ = [1, n]  k = [1, p] Ò jk′ = [1, p]  k = [1, m] È σ ij Ò τ ij ˰ˆ °ººˆmˈ°ˆmËÓÓº}ºä¹º
                                                                                                         −1
    ÓËӈ©äȈ¯Ò©¹Ë¯Ë²ºÈ S ÒË®º­¯ÈˆÓº® T = S                       
         
         
         €¯ºäºÏ}º°ˆ  Ò Ó˂º­º҈ÈË亰ˆ  °ˆÈÓȯˆÓº® °²Ëä© º­ºÏÓÈËÓÒ® ¹¯ÒäËÓÒ
ˆËã Óº}ˆËÓϺ¯ÈäºËmÒÓ©‚ÎËÓȹ¯Òä˯˪ˆººº¹¯ËËãËÓÒ«ºªˆºä‚mˆËÓϺ¯Óºä
Ò°Ò°ãËÓÒÒ Ò°¹ºã ςˈ°« °¹ËÒÈã ÓÈ« ­ºãËË }ºä¹È}ˆÓÈ« Áº¯äÈ º¹Ò°ÈÓÒ« ˆËÓϺ¯Ó©²
º­žË}ˆºmÒº¹Ë¯ÈÒ®°ÓÒäÒº°Óºm‚}ºˆº¯º®°º°ˆÈmã« ˆ°ãË‚ Ò˹¯ÈmÒãÈ
         
         
         
~ȹҰˆËÓϺ¯ºm
         
         
    ° ¹º¯«ºËÓÓ©®ÓÈ­º¯m˝˰ˆmËÓÓ©²Ò°Ëã«mã« Ò²°«}ºä¹ºÓËӈÈäÒˆËÓ
           Ϻ¯È º­¯Èςˈ q + p unétyí zjisq|y ÓÈÏ©mÈËä‚  ˆÈ}ÎË q + p unétvp
           ujzéq|np ÒãÒ q + p unét€u ujxxqkvu  }ÈΩ® ªãËäËӈ }ºˆº¯º®
           ºÓºÏÓÈÓº º¹¯ËËãËÓ ÓÈ­º¯ºä ÏÓÈËÓÒ® }ºÓˆ¯ÈmȯÒÈӈө² ÒÓË}°ºm
            j1, j2 ,..., jq Ò}ºmȯÒÈӈө²ÒÓË}°ºm i1, i2 ,..., i p 
               
                        p°ãÒ }È}º®ãÒ­º ÒÏ ÒÓË}°ºm ¹¯ÒÓÒäÈˈ ÏÓÈËÓÒ« ºˆ  º Q ˆº m ÏȹҰÒ
                        ˆËÓϺ¯È wnén·nt otj·ntqp qtlnrxj tn yrjo€kjnzx¹ Ò ¹¯Ë¹ºãÈÈˈ°« ˆº
                        m©¹Ò°ÈÓ©}ºä¹ºÓËӈ©ˆËÓϺ¯Èã«kxn}ªˆÒ²ÏÓÈËÓÒ®