Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 326 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
i¯º®Ȱº Ò°¹ºãÏË亮Áº¯äº®¹¯Ë°ÈmãËÓÒ«}ºä¹ãË}°Ó©²Ò°Ëã«mã«Ë°«
Ò²ërxwvtnt|qjstj¹ Áº¯äÈ}ºº¯È« ¹ºãÈË°«¹¯Ëº¯ÈϺmÈÓÒËä¯ÒºÓºäË¯Ò˰}º®
Áº¯ä©¹º{véuysnêpsnéj
e
iz
zi z z
=+ cos sin ,

{ªºä°ãÈËÒÏ
ziz i
=+ = +
αβ ϕ ϕ
(cos sin )
°ãËËº
z
e
i
=
ρ
ϕ

j°¹ºãϺmÈÓÒË ª}°¹ºÓËÓÒÈãÓº® Áº¯ä© ÏȹҰÒ }ºä¹ãË}°Ó©² Ò°Ëã äºÎË
¹¯º°Ò¯ËËÓÒËÓË}ºº¯©²ÏÈÈ¹º°}ºã}¹¯Ò¹Ë¯ËäÓºÎËÓÒÒ}ºä¹ãË}°Ó©²Ò°Ëã
Ò²äºãÒ¹Ë¯ËäÓºÎÈ°«ÈȯäËÓ©°}ãÈ©mÈ°«

sȹ¯Òä˯
)(
2121
212121
ϕϕϕϕ
ρ
ρ
ρ
ρ
+
=
=
iii
eee
zz
ÒãÒ
,...2,1,0,
2
)2(
2
2
)
(
±±===
+
+
k
k
k
i
eei
i
i
π
π
π
π

ÈÈ
Ëjpzqrjrvnsqivknnxzknttvnén¡ntqnyéjktntq¹
cos x
=
5

¯
ËÓÒË
 jÏ Áº¯äã© w®ã˯È °ãËË º
cos ,zz
ee
iz iz
=∀
+
2
 ¹ºªºä ÈÓÓºË
¯ÈmÓËÓÒË äºÎÓº ÏȹҰÈmmÒË
ee
ix ix
+
=
2
5
ÒãÒ
y
y
+− =
1
10 0
 Ë
y
e
ix
=

|°ÈÓȲºÒäº
e
ix
=
±526
º˰
ix
ln( )526
ÒãÒº}ºÓÈ
ËãÓº
)625(ln
2
±=x


|º°ÓºmÈÓÒË ¯È°¹¯º°¯ÈÓËÓÒ«°mº®°m ª}°¹ºÓËÓÒÈãÓº®ÁÓ}ÒÒ mË˰mËÓÓººȯäËÓÈ
ÓÈ}ºä¹ãË}°Ó©®°ãÈ®¹¯ÒmºÒ°«m}¯°Ënz
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          i¯‚º®ȰˆºÒ°¹ºã ςË亮Áº¯äº®¹¯Ë°ˆÈmãËÓÒ«}ºä¹ãË}°Ó©²Ò°Ëã«mã«Ëˆ°«
Ò² ërxwvtnt|qjstj¹ Áº¯äÈ }ºˆº¯È« ¹ºã‚Èˈ°« ¹¯Ëº­¯ÈϺmÈÓÒËä ˆ¯ÒºÓºäˈ¯Ò˰}º®
Áº¯ä©¹º{véuysnêpsnéj
          
                                            eiz = cos z + i sin z , ∀z ∈ Ω 
            
                                                                                 iϕ
{ªˆºä°ã‚ÈËÒÏ z = α + β i = z (cos ϕ + i sin ϕ ) °ãË‚ˈˆº z = ρ e 


        j°¹ºã ϺmÈÓÒË ª}°¹ºÓËÓÒÈã Óº® Áº¯ä© ÏȹҰÒ }ºä¹ãË}°Ó©² Ò°Ëã äºÎˈ
‚¹¯º°ˆÒˆ ¯Ë ËÓÒËÓË}ºˆº¯©²ÏÈȹº°}ºã }‚¹¯Ò¹Ë¯ËäÓºÎËÓÒÒ}ºä¹ãË}°Ó©²Ò°Ëã
Ҳ亂ãҹ˯ËäÓºÎÈ ˆ°«Èȯ‚äËӈ©°}ãÈ©mÈ ˆ°« 
        
        sȹ¯Òä˯
        
                                         iϕ1    iϕ 2             i (ϕ1 + ϕ 2 )
                              z1z 2 = ρ1e ρ 2e        = ρ1 ρ 2 e               

ÒãÒ

                                                 π
                                               i ( + 2π k ) i          π
                                                                   −       + 2π k
                                     i = (e
                                      i           2
                                                           )    =e     2            , ∀k = 0,±1,±2,... 
            
            
            
~ÈÈÈËjpzqrjrvnsqivknnxzknttvnén¡ntqnyéjktntq¹ cos                                               x = 5 
¯
            
                                                                                          eiz + e −iz
cËËÓÒË       jÏ Áº¯ä‚ã© w®ã˯È °ãË‚ˈ ˆº cos z =                                            , ∀z ∈ Ω  ¹ºªˆºä‚ ÈÓÓºË
                                                                                               2
                                                                                ei    x   + e −i   x                      1
                 ‚¯ÈmÓËÓÒË äºÎÓº ÏȹҰȈ  m mÒË                                                  = 5  ÒãÒ y +       − 10 = 0  Ë
                                                                                          2                               y
                   y = ei x 


                 |ˆ° ÈÓȲºÒ䈺                 ei   x    =5± 2         6 ˆº˰ˆ  i x = ln(5 ± 2 6 ) ÒãÒº}ºÓÈ
                 ˆËã Óº x = − ln (5 ± 2 6 ) 
                                          2





 |­º°ÓºmÈÓÒË ¯È°¹¯º°ˆ¯ÈÓËÓÒ« °mº®°ˆm ª}°¹ºÓËÓÒÈã Óº® Á‚Ó}ÒÒ m˝˰ˆmËÓÓºº ȯ‚äËӈÈ
ÓÈ}ºä¹ãË}°Ó©®°ã‚È®¹¯Òmº҈°«m}‚¯°Ë‘nz