Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 32 стр.

UptoLike

Составители: 

Рубрика: 

36
Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
Ò°mË}º¯º}Ò
M
¯ÈmËÓ
λ
λη
ξ
λ
λη
ξ
λ
λη
ξ
+
+
+
+
+
+
=
1
1
1
33
22
11
OM
m°Òã°ãË°mÒ«
~ÈäËÈÓÒË
} ÏÈÈË  ¹¯ÒmºÒ ¯ËËÓÒË ÏÈÈÒ º©°}ÈÓÒ« ËÓ¯È äÈ°° °Ò°Ëä©
äÈ˯ÒÈãÓ©²ºË}
jÏäËÓËÓÒË}ºº¯ÒÓÈ¹¯ÒÏÈäËÓËÈÏÒ°ÈÒÓÈÈãÈ}ºº¯ÒÓÈ
º°}ºã}m©º¯°Ò°Ëä©}ºº¯ÒÓÈäºÎË©°ËãÈÓ¯ÈÏãÒÓ©äÒ°¹º°ºÈ
äÒmº¹¯º°ºÒÏäËÓËÓÒÒ}ºº¯ÒÓÈ¹¯Ò¹Ë¯Ë²ºËººÓººÈÏÒ°È}¯ºäÒÏÈäËÓË
ÓÈÈãÈ }ºº¯ÒÓÈ ¹¯Ë°Èmã«Ë ÏÓÈÒËãÓ©® ¹¯È}ÒË°}Ò® ÒÓ˯˰ sÈ®Ëä ¹¯ÈmÒãÈ
m©¯ÈÎÈÒË ÏÈmÒ°Ò亰 }ºº¯ÒÓÈ ¹¯ºÒÏmºãÓº® º}Ò ¹¯º°¯ÈÓ°mÈ ÏÈÈÓÓ©² m
ºÓº®°Ò°ËäË}ºº¯ÒÓÈº}ºº¯ÒÓÈªº®ÎËº}Òm¯º®
°ÈÓ©mËË}ȯºm©°Ò°Ëä©}ºº¯ÒÓÈÙ°ȯȫµ
},,,{
321
gggO
ÒÙÓºmÈ«µ
},,,{
321
gggO
cÒ°{©¯ÈÏÒämË}º¯©ÙÓºmººµÈÏÒ°ÈÈÈ}ÎËmË}º¯
OO
˯ËÏ
mË}º¯©Ù°ȯººµwºäºÎÓº°ËãÈm°ËÈÒ¹¯ÒºäËÒÓ°mËÓÓ©ä°¹º°ººä

.
332211
3332231133
3322221122
3312211111
++=
++=
++=
++=
gggOO
gggg
gggg
gggg
βββ
σσσ
σσσ
σσσ

˺¯ËäÈ

zºº¯ÒÓÈ© ¹¯ºÒÏmºãÓº®º}Òm Ù°ȯº®µ°Ò°ËäË }ºº¯ÒÓÈ °m«ÏÈÓ©
°ËË}ºº¯ÒÓÈÈäÒmÙÓºmº®µ°ººÓºËÓÒ«äÒ

.
33332321313
23232221212
13132121111
β
ξ
σ
ξ
σ
ξ
σ
ξ
β
ξ
σ
ξ
σ
ξ
σ
ξ
β
ξ
σ
ξ
σ
ξ
σ
ξ
+
+
+
=
+
+
+
=
+
+
+
=
36 Ë }  Ò Ò   } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                  ξ1 + λη1
                                     1+ λ
                              →   ξ 2 + λη 2
cÈ҂°mË}ˆº¯ˆº}ÒM¯ÈmËÓ OM =            m°Òã‚°ãË°ˆmÒ«
                                     1+ λ
                                  ξ 3 + λη3
                                     1+ λ


~ÈäËÈÓÒË } ÏÈÈË  ¹¯Òmº҈ ¯Ë ËÓÒË ÏÈÈÒ ºˆ©°}ÈÓÒ« Ëӈ¯È äÈ°° °Ò°ˆËä©
                   äȈ˯ÒÈã Ó©²ˆºË}
            
            
            
            
jÏäËÓËÓÒË}ºº¯ÒÓȈ¹¯ÒÏÈäËÓË­ÈÏÒ°ÈÒÓÈÈãÈ}ºº¯ÒÓȈ
        
        
        
        º°}ºã }‚m©­º¯°Ò°ˆËä©}ºº¯ÒÓȈäºÎˈ­©ˆ °ËãÈÓ¯ÈÏãÒÓ©äÒ°¹º°º­È
äÒmº¹¯º°º­ÒÏäËÓËÓÒÒ}ºº¯ÒÓȈ¹¯Ò¹Ë¯Ë²ºËºˆºÓºº­ÈÏÒ°È}¯‚ºä‚ÒÏÈäËÓË
ÓÈÈãÈ }ºº¯ÒÓȈ ¹¯Ë°ˆÈmã«Ëˆ ÏÓÈ҈Ëã Ó©® ¹¯È}ˆÒË°}Ò® Òӈ˯˰ sÈ®Ëä ¹¯ÈmÒãÈ
m©¯ÈÎÈ ÒË ÏÈmÒ°Ò亰ˆ  }ºº¯ÒÓȈ ¹¯ºÒÏmºã Óº® ˆº}Ò ¹¯º°ˆ¯ÈÓ°ˆmÈ ÏÈÈÓÓ©² m
ºÓº®°Ò°ˆËäË}ºº¯ÒÓȈºˆ}ºº¯ÒÓȈªˆº®Îˈº}Òm¯‚º®
        
                                                                                                                → →        →
            ‚°ˆ ÈÓ©mËË}ȯˆºm©°Ò°ˆËä©}ºº¯ÒÓȈÙ°ˆÈ¯È«µ {O , g1 , g 2 , g 3 } ÒÙÓºmÈ«µ
       → →       →                                                                                                               →
{O ′, g1′ , g ′2 , g 3′ }  cÒ° {©¯ÈÏÒämË}ˆº¯©ÙÓºmººµ­ÈÏÒ°ÈȈÈ}ÎËmË}ˆº¯ OO′ ˯ËÏ
mË}ˆº¯©Ù°ˆÈ¯ººµwˆºäºÎÓº°ËãȈ m°ËÈÒ¹¯ÒˆºäËÒÓ°ˆmËÓÓ©ä°¹º°º­ºä
       
                                                  →           →            →           →
                                                  g1′ = σ 11 g1 + σ 21 g 2 + σ 31 g 3
                                                  →            →           →           →
 g 2′ = σ 12 g1 + σ 22 g 2 + σ 32 g 3   
                                                  →            →           →           →
                                                 g 3′ = σ 13 g1 + σ 23 g 2 + σ 33 g 3

                                                   →           →          →          →
                                                 OO ′ = β1 g1 + β 2 g 2 + β 3 g 3 .
            
    ‘˺¯ËäÈ      zºº¯ÒÓȈ© ¹¯ºÒÏmºã Óº®ˆº}ÒmÙ°ˆÈ¯º®µ°Ò°ˆËäË}ºº¯ÒÓȈ°m«ÏÈÓ©
           °ËË}ºº¯ÒÓȈÈäÒmÙÓºmº®µ°ººˆÓºËÓÒ«äÒ
                  
                                             ξ1 = σ 11ξ1′ + σ 12ξ 2′ + σ 13ξ 3′ + β1
                   ξ 2 = σ 21ξ1′ + σ 22ξ 2′ + σ 23ξ 3′ + β 2 
                                             ξ 3 = σ 31ξ1′ + σ 32ξ 2′ + σ 33ξ 3′ + β 3.