Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 361 стр.

UptoLike

Составители: 

Рубрика: 

cË}ºäËÓËäÈ«ãÒ˯È¯È


vmº®°mÈ°º°mËÓÓ©²mË}º¯ºmãÒÓˮӺºº¹Ë¯Èº¯È
vmº®°mÈ°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«mË}º¯ºm
vmº®°mÈ°äËÈÓÓºº¹¯ºÒÏmËËÓÒ«mË}º¯ºm
vmº®°mÈªããÒ¹°È¯
vmº®°mÈªããÒ¹°ºÒÈ¯
vmº®°mÈªããÒ¹ÒË°}ºº¹È¯ÈºãºÒÈ¯
vm«Ï}È¹ãº°}º°Ë®m¹¯º°¯ÈÓ°mË
ÓÈ¯È}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
vÒääË¯Ò¯ºmÈÓÒËËÓϺ¯ºm¯
vÒääË¯ÒË°}È«äÈ¯ÒÈ
vÒääË¯ÒÓ©®ÒãÒÓˮө®ÁÓ}ÒºÓÈã
vÒ°ËäÈ
n
ãÒÓˮө²¯ÈmÓËÓÒ®°
n
ÓËÒÏmË°Ó©äÒ
vÒ°ËäÈ
m
ãÒÓˮө²¯ÈmÓËÓÒ®°
n
ÓËÒÏmË°Ó©äÒ
v}È㫯ӺË¹¯ºÒÏmËËÓÒËmË}º¯ºm¯
v}È㫯ӺË¹¯ºÒÏmËËÓÒËªãËäËÓºmmËm}ãÒºmºä¹¯º°¯ÈÓ°mË
vãºÎËÓÒËäÈ¯Ò
vãºÎËÓÒËmË}º¯ºmm}ºº¯ÒÓÈÓº®Áº¯äË
vãºÎËÓÒËãÒÓˮө²º¹Ë¯Èº¯ºmmäÈ¯ÒÓº®Áº¯äË
vãºÎËÓÒËÓȹ¯ÈmãËÓÓ©²º¯ËÏ}ºm
vãºÎËÓÒËËÓϺ¯ºm¯
väËÈÓÓºË¹¯ºÒÏmËËÓÒËmË}º¯ºm
vº°mËÓÓºËÏÓÈËÓÒËÒ°ãºãÒÓˮӺºº¹Ë¯Èº¯È
vº°mËÓÓ©®mË}º¯ãÒÓˮӺºº¹Ë¯Èº¯È
vºmäË°ÓÈ«°Ò°ËäÈãÒÓˮө²¯ÈmÓËÓÒ®
ãÈËÓÒËº°ääÒ¯ºmÈÓÒÒ
vººÓºËÓÒËÓ˺¹¯ËËãËÓÓº°Ë®
vº¹¯«ÎËÓÓºËãÒÓˮӺË¹¯º°¯ÈÓ°mº
vº¹¯«ÎËÓÓ©®º¹Ë¯Èº¯
v¯ÈmÓËÓÒËäÈ¯Ò
v¯ÈmÓËÓÒËÓȹ¯ÈmãËÓÓ©²º¯ËÏ}ºm
v¯ËÓËËÏÓÈËÓÒËº¹Ë¯Èº¯È
vºãËªãËäËÓºmäÈ¯Ò©
v¯º}ÈªãËäËÓºmäÈ¯Ò©
vääÈãÒÓˮө²º¹Ë¯Èº¯ºm
vääÈãÒÓˮө²ÁÓ}ÒºÓÈãºm
vääÈ¹º¹¯º°¯ÈÓ°mãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
v˹ËÓ}mȯÈÓº®äÈ¯Ò©°Ëã©äÓ˺¯ÒÈËãÓ©ä¹º}ÈÏÈËãËä
vÁ˯ÒË°}È«°Ò°ËäÈ}ºº¯ÒÓÈ
v¯Ë}ÒmÓºËãÒÓˮӺËºº¯ÈÎËÓÒË°¯Ë}Ò«
´
ËÓϺ¯©¯
ËÓϺ¯©mËm}ãÒºmºä¹¯º°¯ÈÓ°mË¯
ËÓϺ¯©mº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ë¯
˺¯ËäÈÈäÒãºÓÈzªãÒ
˺¯ËäÈ¯ÈäÈbäÒÈ
˺¯ËäÈÒÓ˯ÒÒ}mȯÈÒÓ©²ÁÓ}ÒºÓÈãºm
˺¯ËäÈz¯ºÓË}˯ÈzȹËããÒ
˺¯ËäÈȹãÈ°È
˺¯ËäÈºÈÏÒ°ÓºääÒÓº¯Ë
cË}ºäËÓ‚ËäÈ«ã҈˯Ȉ‚¯È




            vmº®°ˆmÈ°º­°ˆmËÓÓ©²mË}ˆº¯ºmãÒÓˮӺºº¹Ë¯Èˆº¯È
            vmº®°ˆmÈ°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«mË}ˆº¯ºm
            vmº®°ˆmÈ°äË ÈÓÓºº¹¯ºÒÏmËËÓÒ«mË}ˆº¯ºm
            vmº®°ˆmȪããÒ¹°È¯
            vmº®°ˆmȪããÒ¹°ºÒȁ¯
            vmº®°ˆmȪããÒ¹ˆÒË°}ºº¹È¯È­ºãºÒȁ¯
            vm«Ï}ȹ㺰}º°ˆË®m¹¯º°ˆ¯ÈÓ°ˆmË
            vÒÓȈ‚¯È}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈ
            vÒääˈ¯Ò¯ºmÈÓÒˈËÓϺ¯ºm¯
            vÒääˈ¯ÒË°}È«äȈ¯ÒÈ
            vÒääˈ¯ÒÓ©®­ÒãÒÓˮө®Á‚Ó}ÒºÓÈã
            vÒ°ˆËäÈnãÒÓˮө²‚¯ÈmÓËÓÒ®°nÓËÒÏmË°ˆÓ©äÒ
            vÒ°ˆËäÈmãÒÓˮө²‚¯ÈmÓËÓÒ®°nÓËÒÏmË°ˆÓ©äÒ
            v}È㫯Ӻ˹¯ºÒÏmËËÓÒËmË}ˆº¯ºm¯
            v}È㫯Ӻ˹¯ºÒÏmËËÓÒ˪ãËäËӈºmmËm}ãÒºmºä¹¯º°ˆ¯ÈÓ°ˆmË
            vãºÎËÓÒËäȈ¯Ò
            vãºÎËÓÒËmË}ˆº¯ºmm}ºº¯ÒÓȈӺ®Áº¯äË
            vãºÎËÓÒËãÒÓˮө²º¹Ë¯Èˆº¯ºmmäȈ¯ÒÓº®Áº¯äË
            vãºÎËÓÒËÓȹ¯ÈmãËÓÓ©²ºˆ¯ËÏ}ºm
            vãºÎËÓÒˈËÓϺ¯ºm¯
            väË ÈÓӺ˹¯ºÒÏmËËÓÒËmË}ˆº¯ºm
            vº­°ˆmËÓÓºËÏÓÈËÓÒË Ұ㺠ãÒÓˮӺºº¹Ë¯Èˆº¯È
            vº­°ˆmËÓÓ©®mË}ˆº¯ãÒÓˮӺºº¹Ë¯Èˆº¯È
            vºmäË°ˆÓÈ«°Ò°ˆËäÈãÒÓˮө²‚¯ÈmÓËÓÒ®
            vºãÈ ËÓÒ˺°‚ääÒ¯ºmÈÓÒÒ
            vººˆÓº ËÓÒËÓ˺¹¯ËËãËÓÓº°ˆË®
            vº¹¯«ÎËÓÓºËãÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmº
            vº¹¯«ÎËÓÓ©®º¹Ë¯Èˆº¯
            v¯ÈmÓËÓÒËäȈ¯Ò
            v¯ÈmÓËÓÒËÓȹ¯ÈmãËÓÓ©²ºˆ¯ËÏ}ºm
            v¯ËÓËËÏÓÈËÓÒ˺¹Ë¯Èˆº¯È
            vˆºã­ËªãËäËӈºmäȈ¯Ò©
            vˆ¯º}ȪãËäËӈºmäȈ¯Ò©
            v‚ääÈãÒÓˮө²º¹Ë¯Èˆº¯ºm
            v‚ääÈãÒÓˮө²Á‚Ó}ÒºÓÈãºm
            v‚ääȹº¹¯º°ˆ¯ÈÓ°ˆmãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
            vˆË¹ËÓ }mȯȈӺ®äȈ¯Ò©°Ëã©äÓ˺ˆ¯ÒȈËã ө乺}ÈÏȈËãËä
            vÁ˯ÒË°}È«°Ò°ˆËäÈ}ºº¯ÒÓȈ
            v ¯žË}ˆÒmÓºËãÒÓˮӺ˺ˆº­¯ÈÎËÓÒË ° ¯žË}Ò« 
            
            

            ´
            
            ‘ËÓϺ¯©¯
            ‘ËÓϺ¯©mËm}ãÒºmºä¹¯º°ˆ¯ÈÓ°ˆmˁ¯
            ‘ËÓϺ¯©mº¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏҰˁ¯
            ‘˺¯ËäÈ€ÈäÒ㠈ºÓÈzªãÒ
            ‘˺¯ËäÈ€¯ÈäÈbäÒˆÈ
            ‘˺¯ËäÈÒÓ˯ÒÒ}mȯȈÒÓ©²Á‚Ó}ÒºÓÈãºm
            ‘˺¯ËäÈz¯ºÓË}˯ÈzȹËããÒ
            ‘˺¯ËäÈȹãÈ°È
            ‘˺¯ËäȺ­ÈÏÒ°ÓºääÒÓº¯Ë