Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 362 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
˺¯ËäÈº¹ºã«¯Óºä¯ÈÏãºÎËÓÒÒ
˺¯ËäÈº¯ÈÓËäÈ¯Ò©
˺¯ËäÈºÒϺ亯ÁÒÏäË
˺¯ËäÈn¯ËºãäÈ
ºÎË°mËÓÓ©®º¹Ë¯Èº¯
º}È¹Ë¯Ë°ËËÓÒ«¹¯«äº®Ò¹ãº°}º°Ò
¯ÈÓ°¹ºÓÒ¯ºmÈÓÒËäÈ¯Ò©
¯ÈÓ°¹ºÓÒ¯ºmÈÓÒË¹¯ºÒÏmËËÓÒ«äÈ¯Ò
¯ÈÓ°¹ºÓÒ¯ºmÈÓÒËËÓϺ¯ºm¯
¯ÒmÒÈãÓÈ«ãÒÓË®ÓÈ«}ºäÒÓÈÒ«mË}º¯ºm
¯ÒºÓºäË¯ÒË°}È«Áº¯äÈÏȹҰÒ}ºä¹ãË}°Ó©²Ò°Ëã¯
µ
ºãäËÎªãËäËÓÈäÒmËm}ãÒºmºä¹¯º°¯ÈÓ°mË
äÓºÎËÓÒËäÈ¯Ò©ÓÈÒ°ãº
äÓºÎËÓÒËÓȹ¯ÈmãËÓÓººº¯ËÏ}ÈÓÈÒ°ãº
äÓºÎËÓÒËmË}º¯ÈÓÈÒ°ãºm}ºº¯ÒÓÈÓº®Áº¯äË
äÓºÎËÓÒËãÒÓˮӺºº¹Ë¯Èº¯ÈÓÈÒ°ãºmäÈ¯ÒÓº®Áº¯äË
äÓºÎËÓÒËËÓϺ¯ºm¯
äÓºÎËÓÒËËÓϺ¯ºmÓÈÒ°ãº¯
ÓÒȯӺË¹¯º°¯ÈÓ°mº
ÓÒȯө®º¹Ë¯Èº¯
¯ÈmÓËÓÒË¹ãº°}º°ÒmË}ȯºmº®°Ò°ËäË}ºº¯ÒÓÈ
¯ÈmÓËÓÒË¹¯«äº®ÓÈ¹ãº°}º°ÒmË}ȯºmº®°Ò°ËäË}ºº¯ÒÓÈ
¯ÈmÓËÓÒË¹}È¹¯«ä©²ÓÈ¹ãº°}º°Ò
°ãºmÒË}ºããÒÓËȯӺ°ÒmË}º¯ºmm}ºº¯ÒÓÈÓº®Áº¯äË
°ãºmÒË}ºä¹ãÈÓȯӺ°ÒmË}º¯ºmm}ºº¯ÒÓÈÓº®Áº¯äË
°ãºmÒËº¯ººÓÈãÓº°Ò¹¯«ä©²ÓÈ¹ãº°}º°Ò
°ãºmÒËº¯ººÓÈãÓº°Ò¹¯«ä©²m¹¯º°¯ÈÓ°mË
°ãºmÒËº¯ººÓÈãÓº°Ò¹¯«äº®Ò¹ãº°}º°Ò
°ãºmÒË¹È¯ÈããËãÓº°Ò¹¯«ä©²ÓÈ¹ãº°}º°Ò
°ãºmÒË¹È¯ÈããËãÓº°Ò¹¯«ä©²m¹¯º°¯ÈÓ°mË
°ãºmÒË¹È¯ÈããËãÓº°Ò¹¯«äº®Ò¹ãº°}º°Ò
¶
nº}ÈãÓºË°mº®°mºҹ˯ºã©¯
nº}ÈãÓºË°mº®°mºªããÒ¹°È¯
nº¯äãÈw®ã˯È¯
nº¯äã©¹Ë¯Ë²ºÈººÓº®°Ò°Ëä©}ºº¯ÒÓÈ}¯º®
nº¯ä©ÏÈÈÓÒ«¹ãº°}º°Òm¹¯º°¯ÈÓ°mË
nº¯ä©ÏÈÈÓÒ«¹¯«äº®ÓÈ¹ãº°}º°Ò
nÓÈäËÓÈãÓÈ«°Ò°ËäÈ¯ËËÓÒ®°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
nÓ}ÒºÓÈã
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          ‘˺¯ËäȺ¹ºã«¯Óºä¯ÈÏãºÎËÓÒÒ
          ‘˺¯ËäȺ¯ÈÓËäȈ¯Ò©
          ‘˺¯ËäȺ­ÒϺ亯ÁÒÏäË
          ‘˺¯ËäÈn¯Ëºã äÈ
          ‘ºÎË°ˆmËÓÓ©®º¹Ë¯Èˆº¯
          ‘º}ȹ˯˰ËËÓÒ«¹¯«äº®Ò¹ãº°}º°ˆÒ
          ‘¯ÈÓ°¹ºÓÒ¯ºmÈÓÒËäȈ¯Ò©
          ‘¯ÈÓ°¹ºÓÒ¯ºmÈÓÒ˹¯ºÒÏmËËÓÒ«äȈ¯Ò
          ‘¯ÈÓ°¹ºÓÒ¯ºmÈÓÒˈËÓϺ¯ºm¯
          ‘¯ÒmÒÈã ÓÈ«ãÒÓË®ÓÈ«}ºä­ÒÓÈÒ«mË}ˆº¯ºm
          ‘¯ÒºÓºäˈ¯ÒË°}È«Áº¯äÈÏȹҰÒ}ºä¹ãË}°Ó©²Ò°Ëは
          
          
          

            µ
            
            ºãäË΂ªãËäËӈÈäÒmËm}ãÒºmºä¹¯º°ˆ¯ÈÓ°ˆmË
            äÓºÎËÓÒËäȈ¯Ò©ÓÈÒ°ãº
            äÓºÎËÓÒËÓȹ¯ÈmãËÓÓºººˆ¯ËÏ}ÈÓÈÒ°ãº
            äÓºÎËÓÒËmË}ˆº¯ÈÓÈÒ°ãºm}ºº¯ÒÓȈӺ®Áº¯äË
            äÓºÎËÓÒËãÒÓˮӺºº¹Ë¯Èˆº¯ÈÓÈÒ°ãºmäȈ¯ÒÓº®Áº¯äË
            äÓºÎËÓÒˈËÓϺ¯ºm¯
            äÓºÎËÓÒˈËÓϺ¯ºmÓÈҰ㺁¯
            Ó҈ȯӺ˹¯º°ˆ¯ÈÓ°ˆmº
            Ó҈ȯө®º¹Ë¯Èˆº¯
            ¯ÈmÓËÓÒ˹㺰}º°ˆÒmË}ȯˆºmº®°Ò°ˆËäË}ºº¯ÒÓȈ
            ¯ÈmÓËÓÒ˹¯«äº®Óȹ㺰}º°ˆÒmË}ȯˆºmº®°Ò°ˆËäË}ºº¯ÒÓȈ
            ¯ÈmÓËÓÒ˹‚}ȹ¯«ä©²Óȹ㺰}º°ˆÒ
            °ãºmÒË}ºããÒÓËȯӺ°ˆÒmË}ˆº¯ºmm}ºº¯ÒÓȈӺ®Áº¯äË
            °ãºmÒË}ºä¹ãÈÓȯӺ°ˆÒmË}ˆº¯ºmm}ºº¯ÒÓȈӺ®Áº¯äË
            °ãºmÒ˺¯ˆººÓÈã Óº°ˆÒ¹¯«ä©²Óȹ㺰}º°ˆÒ
            °ãºmÒ˺¯ˆººÓÈã Óº°ˆÒ¹¯«ä©²m¹¯º°ˆ¯ÈÓ°ˆmË
            °ãºmÒ˺¯ˆººÓÈã Óº°ˆÒ¹¯«äº®Ò¹ãº°}º°ˆÒ
            °ãºmÒ˹ȯÈããËã Óº°ˆÒ¹¯«ä©²Óȹ㺰}º°ˆÒ
            °ãºmÒ˹ȯÈããËã Óº°ˆÒ¹¯«ä©²m¹¯º°ˆ¯ÈÓ°ˆmË
            °ãºmÒ˹ȯÈããËã Óº°ˆÒ¹¯«äº®Ò¹ãº°}º°ˆÒ
            
            
            

            ¶
            
            nº}Èã Ӻ˰mº®°ˆmºҹ˯­ºã©¯
            nº}Èã Ӻ˰mº®°ˆmºªããÒ¹°È¯
            nº¯ä‚ãÈw®ã˯ȁ¯
            nº¯ä‚㩹˯˲ºÈºˆºÓº®°Ò°ˆËä©}ºº¯ÒÓȈ}¯‚º®
            nº¯ä©ÏÈÈÓÒ«¹ãº°}º°ˆÒm¹¯º°ˆ¯ÈÓ°ˆmË
            nº¯ä©ÏÈÈÓÒ«¹¯«äº®Óȹ㺰}º°ˆÒ
            n‚ÓÈäËӈÈã ÓÈ«°Ò°ˆËäÈ¯Ë ËÓÒ®°Ò°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®
            n‚Ó}ÒºÓÈã