Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 38 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
{©¹ºãÓÒäÓº¯äÒ¯ºm}Óȹ¯Èmã«˺mË}º¯È
b
 ºË°ÏÈäËÓÒä˺ÓÈmË}
º¯
e
b
b
=
||
Ò¯È°°äº¯ÒäÓº¯äÒ¯ºmÈÓÓ©®ÈÏÒ°
{}
e
ÓÈº°Ò
l
cÒ°
|¹¯ËËãËÓÒË

ïqxsnttuotj·ntqnuº¯ººÓÈãÓº®¹¯ºË}ÒÒmË}º¯È
a
ÓÈº°
l
ÓÈ
Ï©mÈË°«}ºº¯ÒÓÈÈmË}º¯È
Pr
l
a
Λ→
mÈÏÒ°Ë
^`H

Ò°ãËÓÓºËÏÓÈËÓÒËº¯ººÓÈãÓº® ¹¯ºË}ÒÒmË}º¯È
a
ÓÈº°
l
ººÏÓÈÒä }È}
ý
l
a
jÏ ¯ Ò°ºËmÒÓº º
ý
l
aa
=
cos
ϕ
Ë
ϕ
Ë°ºãäËÎ
a
Ò
e
º
ãºääËÎmË}º¯ÈäÒËä¹ºÓÒäÈË°ãÒÓË}ÈÏÈÓºÒÓºËÓÈÒäËÓÒ®ºãäËÎ
ÈÓÓ©äÒmË}º¯ÈäÒ°°ºmäËËÓÓ©äÒÓÈÈãÈäÒ

a

ϕ

Pr
l
a
Λ→

H
èqxytvr
vmº®°mÈº¯ººÓÈãÓ©²¹¯ºË}Ò®
°
¯ºË}Ò«°ää©m²mË}º¯ºm¯ÈmÓÈ°ääË¹¯ºË}Ò®ªÒ²mË}º¯ºm
Pr ( ) Pr Pr
lll
aa a a
ΛΛΛ
12 1 2
→→
+= +

iÈÓÓºË°mº®°mºÒãã°¯Ò¯Ë¯Ò°

a
1

a
2

aa
12
→→
+
e
l
èqxytvr
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                            →
                 {©¹ºãÓÒäÓº¯äÒ¯ºm}‚Óȹ¯Èmã« ËºmË}ˆº¯È b ˆºË°ˆ ÏÈäËÓÒä˺ÓÈmË}
                         →
             →           b                                                              →
ˆº¯ e =                →   үȰ°äºˆ¯ÒäÓº¯äÒ¯ºmÈÓÓ©®­ÈÏÒ° { e } ÓȺ°Òl cÒ° 
                     |b|
                 
                 
                                                                                                                     →
 |¹¯ËËãËÓÒË                  ïqxsntt€uotj·ntqnuº¯ˆººÓÈã Óº®¹¯ºË}ÒÒmË}ˆº¯È a ÓȺ°  lÓÈ
                                                                     Λ →                      →
                               Ï©mÈˈ°«}ºº¯ÒÓȈÈmË}ˆº¯È Prl a m­ÈÏÒ°Ë ^ H` 
                 
                                                                                                         →
                     Ò°ãËÓÓºËÏÓÈËÓÒ˺¯ˆººÓÈã Óº®¹¯ºË}ÒÒmË}ˆº¯È a ÓȺ°  lº­ºÏÓÈÒä}È}
         →                                                        →     →                                                     →       →
ý a jϯҰºËmÒÓºˆº ýl a = a cos ϕ Ë ϕ Ë°ˆ ‚ºãäË΂ a Ò e º
     l
‚ãºääË΂mË}ˆº¯ÈäÒ­‚Ë乺ÓÒäȈ  Ë°ãÒÓË‚}ÈÏÈÓºÒÓºË ÓÈÒäËÓ                                                        Ò®‚ºãäË΂
ÈÓÓ©äÒmË}ˆº¯ÈäÒ°°ºmä˝ËÓÓ©äÒÓÈÈãÈäÒ
       
       
                                                                  →
                  a 
                 
                 ϕ
                 
                                                                  Λ →                   →
                  Prl a  H 
                 
                                                           èqxytvr
                 
                 
                 
vmº®°ˆmȺ¯ˆººÓÈãÓ©²¹¯ºË}Ò®
                 
                 
                     ° ¯ºË}Ò«°‚ää©m‚²mË}ˆº¯ºm¯ÈmÓÈ°‚ää˹¯ºË}Ò®ªˆÒ²mË}ˆº¯ºm
                     
                                                              Λ   →     →           Λ   →    Λ   →
                                                             Prl (a1 + a 2 ) = Prl a1 + Prl a 2 
                                
                                iÈÓӺ˰mº®°ˆmºÒãã °ˆ¯Ò¯‚ˈ¯Ò°
                                
                                                                            →
                                 a1 
                                                                                                 →
                                 a2 
                                                                                →   →
                                 a1 + a2 
                                
                                
                                                    →
                                                     e                                                                    l
                                
                                                               èqxytvr